CCHS: Performance

The tutorial outlines the process for evaluating the performance of logistic regression models fitted to complex survey data using R. It focuses on two major aspects: creating Receiver Operating Characteristic (ROC) curves and conducting Archer and Lemeshow Goodness of Fit tests. Here AUC is a measure to evaluate the predictive accuracy of the model, and Archer and Lemeshow test is a statistical test to evaluate how well your model fits the observed data.

We start by importing the required R packages.

# Load required packages
library(survey)
library(ROCR)
library(WeightedROC)

Load data

It loads two datasets from the specified paths.

load("Data/surveydata/cchs123w.RData")
load("Data/surveydata/cchs123w2.RData")
ls()
#> [1] "aic.int.model" "analytic.miss" "analytic2"     "basic.model"  
#> [5] "w.design"
dim(analytic.miss)
#> [1] 397173     23
dim(analytic2)
#> [1] 185613     22

Three different logistic regression models are fitted to the data:

  • Simple model: Model with only OA as a predictor
  • Basic model: Model with OA, age and sex
  • Complex model: Model with many predictors and some interaction terms
# Formula for Simple model
simple.model <- as.formula(I(CVD=="event") ~ OA)
simple.model
#> I(CVD == "event") ~ OA

# Formula for Basic model
basic.model
#> I(CVD == "event") ~ OA + age + sex
#> attr(,"variables")
#> list(I(CVD == "event"), OA, age, sex)
#> attr(,"factors")
#>                   OA age sex
#> I(CVD == "event")  0   0   0
#> OA                 1   0   0
#> age                0   1   0
#> sex                0   0   1
#> attr(,"term.labels")
#> [1] "OA"  "age" "sex"
#> attr(,"order")
#> [1] 1 1 1
#> attr(,"intercept")
#> [1] 1
#> attr(,"response")
#> [1] 1
#> attr(,".Environment")
#> <environment: R_GlobalEnv>
#> attr(,"predvars")
#> list(I(CVD == "event"), OA, age, sex)
#> attr(,"dataClasses")
#> I(CVD == "event")                OA               age               sex 
#>         "logical"          "factor"          "factor"          "factor" 
#>         (weights) 
#>         "numeric"

# Formula for the Complex model with interactions
aic.int.model
#> I(CVD == "event") ~ OA + age + sex + married + race + edu + income + 
#>     bmi + phyact + fruit + bp + diab + doctor + stress + smoke + 
#>     drink + age:sex + bmi:diab
library(survey)

# Simple model
fit0 <- svyglm(simple.model,
              design = w.design,
              family = binomial(logit))
#> Warning in eval(family$initialize): non-integer #successes in a binomial glm!

# Basic model
fit5 <- svyglm(basic.model,
              design = w.design,
              family = binomial(logit))
#> Warning in eval(family$initialize): non-integer #successes in a binomial glm!

# Complex model with interactions
fit9 <- svyglm(aic.int.model,
              design = w.design,
              family = binomial(logit))
#> Warning in eval(family$initialize): non-integer #successes in a binomial glm!

Model performance

ROC curve

This section defines a function, svyROCw, to plot the ROC curves and calculate the area under the curve (AUC). The function can handle both weighted and unweighted survey data.

  • The appropriateness of the fitted logistic regression model needs to be examined before it is accepted for use.
  • Plotting the pairs of - sensitivities vs - 1-specificities on a scatter plot provides a Receiver Operating Characteristic (ROC) curve.
  • The area under the ROC curve = AUC / C-statistic.
  • ROC/AUC should consider weights for complex surveys.

Grading Guidelines for AUC values:

  • 0.90-1.0 excellent discrimination (unusual)
  • 0.80-0.90 good discrimination
  • 0.70-0.80 fair discrimination
  • 0.60-0.70 poor discrimination
  • 0.50-0.60 failed discrimination
require(ROCR)
# WeightedROC may not be on cran for all R versions
# devtools::install_github("tdhock/WeightedROC")

library(WeightedROC)
svyROCw <- function(fit=fit,outcome=analytic2$CVD=="event", weight = NULL){
  # ROC curve for
  # Survey Data with Logistic Regression
  if (is.null(weight)){ # require(ROCR)
    prob <- predict(fit, type = "response")
  pred <- prediction(as.vector(prob), outcome)
  perf <- performance(pred, "tpr", "fpr")
  auc <- performance(pred, measure = "auc")
  auc <- auc@y.values[[1]]
  roc.data <- data.frame(fpr = unlist(perf@x.values), tpr = unlist(perf@y.values), 
      model = "Logistic")
  with(data = roc.data,plot(fpr, tpr, type="l", xlim=c(0,1), ylim=c(0,1), lwd=1,
     xlab="1 - specificity", ylab="Sensitivity",
     main = paste("AUC = ", round(auc,3))))
  mtext("Unweighted ROC")
  abline(0,1, lty=2)
  } else { # library(WeightedROC)
    outcome <- as.numeric(outcome)
  pred <- predict(fit, type = "response")
  tp.fp <- WeightedROC(pred, outcome, weight)
  auc <- WeightedAUC(tp.fp)
  with(data = tp.fp,plot(FPR, TPR, type="l", xlim=c(0,1), ylim=c(0,1), lwd=1,
     xlab="1 - specificity", ylab="Sensitivity",
     main = paste("AUC = ", round(auc,3))))
  abline(0,1, lty=2)
  mtext("Weighted ROC")
  }
}
summary(analytic2$weight)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    1.17   71.56  137.95  214.61  261.91 7154.95
analytic2$corrected.weight <- weights(w.design)
summary(analytic2$corrected.weight)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>    0.39   23.85   45.98   71.54   87.30 2384.98
svyROCw(fit=fit0,outcome=analytic2$CVD=="event", weight = analytic2$corrected.weight)

svyROCw(fit=fit5,outcome=analytic2$CVD=="event", weight = analytic2$corrected.weight)

svyROCw(fit=fit9,outcome=analytic2$CVD=="event", weight = analytic2$corrected.weight)

# This function does not take in to account of strata/cluster

Archer and Lemeshow test

This test helps to evaluate how well the model fits the data. A Goodness of Fit (GOF) function AL.gof is defined. If the p-value from this test is greater than a certain threshold (e.g., 0.05), the model fit is considered acceptable.

  • Hosmer Lemeshow-type tests are most useful as a very crude way to screen for fit problems, and should not be taken as a definitive diagnostic of a ‘good’ fit.
    • problem in small sample size
    • Dependent on G (group)
  • Archer and Lemeshow (2006) extended the standard Hosmer and Lemeshow GOF test for complex surveys.
  • After fitting the survey weighted logistic regression, the F-adjusted mean residual goodness-of-fit test could suggest
    • no evidence of lack of fit (if P-value > a reasonable cut-point, e.g., 0.05)
    • evidence of lack of fit (if P-value < a reasonable cut-point, e.g., 0.05)
AL.gof <- function(fit=fit, data = analytic2, 
                   weight = "corrected.weight"){
  # Archer-Lemeshow Goodness of Fit Test for
  # Survey Data with Logistic Regression
  r <- residuals(fit, type="response") 
  f<-fitted(fit) 
  breaks.g <- c(-Inf, quantile(f,  (1:9)/10), Inf)
  breaks.g <- breaks.g + seq_along(breaks.g) * .Machine$double.eps
  g<- cut(f, breaks.g)
  data2g <- cbind(data,r,g)
  newdesign <- svydesign(id=~1, 
                         weights=as.formula(paste0("~",weight)), 
                        data=data2g)
  decilemodel<- svyglm(r~g, design=newdesign) 
  res <- regTermTest(decilemodel, ~g)
  return(res) 
}
AL.gof(fit0, analytic2, weight ="corrected.weight")
#> Wald test for g
#>  in svyglm(formula = r ~ g, design = newdesign)
#> F =  2.819403e-22  on  1  and  185611  df: p= 1
AL.gof(fit5, analytic2, weight ="corrected.weight")
#> Wald test for g
#>  in svyglm(formula = r ~ g, design = newdesign)
#> F =  2.795204  on  8  and  185604  df: p= 0.0042898
AL.gof(fit9, analytic2, weight = "corrected.weight")
#> Wald test for g
#>  in svyglm(formula = r ~ g, design = newdesign)
#> F =  2.650332  on  9  and  185603  df: p= 0.0045417

Additional function

If the survey data contains strata and cluster, then the following function will be useful:

AL.gof2 <- function(fit=fit7, data = analytic, 
                   weight = "corrected.weight", psu = "psu", strata= "strata"){
  # Archer-Lemeshow Goodness of Fit Test for
  # Survey Data with Logistic Regression
  r <- residuals(fit, type="response") 
  f<-fitted(fit) 
  breaks.g <- c(-Inf, quantile(f,  (1:9)/10), Inf)
  breaks.g <- breaks.g + seq_along(breaks.g) * .Machine$double.eps
  g<- cut(f, breaks.g)
  data2g <- cbind(data,r,g)
  newdesign <- svydesign(id=as.formula(paste0("~",psu)),
                         strata=as.formula(paste0("~",strata)),
                         weights=as.formula(paste0("~",weight)), 
                        data=data2g, nest = TRUE)
  decilemodel<- svyglm(r~g, design=newdesign) 
  res <- regTermTest(decilemodel, ~g)
  return(res) 
}

Video content (optional)

Tip

For those who prefer a video walkthrough, feel free to watch the video below, which offers a description of an earlier version of the above content.