code appeared at least more than the 75th percentile
D64.9 Anemia
rec_dx_D64_once
rec_dx_D64_sporadic
rec_dx_D64_frequent
D75.9P Blood clots
rec_dx_D75_once
rec_dx_D75_sporadic
rec_dx_D75_frequent
D89.9 Immune disorder
rec_dx_D89_once
rec_dx_D89_sporadic
rec_dx_D89_frequent
\(\ldots\)
\(\ldots\)
\(\ldots\)
\(\ldots\)
E07.9 Disorder of thyroid
rec_dx_E07_once
rec_dx_E07_sporadic
rec_dx_E07_frequent
Example of 3 binary covariates created based on the candidate empirical covariate
6.3 Recurrence covariates in the data
Here we show binary recurrence covariates for only 2 columns
6.4 Refined recurrence covariates
Below you can click to see a list of all recurrence covariates obtained in our data.
ICD-10 Recurrence Data
1
rec_dx_A49_once
rec_dx_B00_once
rec_dx_B20_once
2
rec_dx_B20_frequent
rec_dx_B35_once
rec_dx_B37_once
3
rec_dx_B96_once
rec_dx_C50_once
rec_dx_D75_once
4
rec_dx_E03_once
rec_dx_E04_once
rec_dx_E05_once
5
rec_dx_E07_once
rec_dx_E28_once
rec_dx_E28_frequent
6
rec_dx_E29_once
rec_dx_E78_once
rec_dx_E79_once
7
rec_dx_E87_once
rec_dx_F17_once
rec_dx_F20_once
8
rec_dx_F20_frequent
rec_dx_F29_once
rec_dx_F31_once
9
rec_dx_F31_frequent
rec_dx_F32_once
rec_dx_F39_once
10
rec_dx_F41_once
rec_dx_F43_once
rec_dx_F90_once
11
rec_dx_G20_once
rec_dx_G20_frequent
rec_dx_G25_once
12
rec_dx_G30_once
rec_dx_G30_frequent
rec_dx_G31_once
13
rec_dx_G40_once
rec_dx_G43_once
rec_dx_G47_once
14
rec_dx_G89_once
rec_dx_H04_once
rec_dx_H10_once
15
rec_dx_H40_once
rec_dx_H40_frequent
rec_dx_H57_once
16
rec_dx_H57_frequent
rec_dx_H66_once
rec_dx_I10_once
17
rec_dx_I10_frequent
rec_dx_I20_once
rec_dx_I21_once
18
rec_dx_I48_once
rec_dx_I48_frequent
rec_dx_I49_once
19
rec_dx_I50_once
rec_dx_I50_frequent
rec_dx_I51_once
20
rec_dx_I63_once
rec_dx_I70_once
rec_dx_I80_once
21
rec_dx_I99_once
rec_dx_J01_once
rec_dx_J02_once
22
rec_dx_J20_once
rec_dx_J30_once
rec_dx_J40_once
23
rec_dx_J42_once
rec_dx_J43_once
rec_dx_J43_frequent
24
rec_dx_J44_once
rec_dx_J44_frequent
rec_dx_J45_once
25
rec_dx_J45_frequent
rec_dx_J98_once
rec_dx_K04_once
26
rec_dx_K08_once
rec_dx_K21_once
rec_dx_K25_once
27
rec_dx_K27_once
rec_dx_K30_once
rec_dx_K31_once
28
rec_dx_K58_once
rec_dx_K59_once
rec_dx_K76_once
29
rec_dx_K92_once
rec_dx_L08_once
rec_dx_L20_once
30
rec_dx_L23_once
rec_dx_L29_once
rec_dx_L40_once
31
rec_dx_L70_once
rec_dx_L93_once
rec_dx_L93_frequent
32
rec_dx_M06_once
rec_dx_M06_frequent
rec_dx_M10_once
33
rec_dx_M13_once
rec_dx_M19_once
rec_dx_M1A_once
34
rec_dx_M25_once
rec_dx_M54_once
rec_dx_M62_once
35
rec_dx_M79_once
rec_dx_M81_once
rec_dx_N19_once
36
rec_dx_N20_once
rec_dx_N28_once
rec_dx_N30_once
37
rec_dx_N32_once
rec_dx_N39_once
rec_dx_N40_once
38
rec_dx_N42_once
rec_dx_N52_once
rec_dx_N92_once
39
rec_dx_N94_once
rec_dx_N95_once
rec_dx_R00_once
40
rec_dx_R05_once
rec_dx_R06_once
rec_dx_R07_once
41
rec_dx_R09_once
rec_dx_R10_once
rec_dx_R11_once
42
rec_dx_R12_once
rec_dx_R19_once
rec_dx_R21_once
43
rec_dx_R25_once
rec_dx_R32_once
rec_dx_R35_once
44
rec_dx_R39_once
rec_dx_R41_once
rec_dx_R42_once
45
rec_dx_R45_once
rec_dx_R51_once
rec_dx_R52_once
46
rec_dx_R60_once
rec_dx_R73_once
rec_dx_T14_once
47
rec_dx_T78_once
rec_dx_T88_once
rec_dx_Z79_once
48
rec_dx_Z95_once
Tip
Given that we had one dimension of proxy data, \(p=1\), at most \(n=200\) most prevalent codes (with the restriction that minimum number of patients in each code = 20), and \(3\) intensity, we could theoretically have at most \(p \times n \times 3 = 1 \times 200 \times \ 3 = 600\) recurrence covariates.
Based on all of the restrictions, we created 143 distinct recurrence covariates.
The merged data (analytic and proxies) size is now 7,585.
If 2 or all 3 recurrence covariates are identical, only one distinct recurrence covariate is returned. This is why you do not see any sporadic recurrence covariate here.
Schneeweiss, Sebastian, Jeremy A Rassen, Robert J Glynn, Jerry Avorn, Helen Mogun, and M Alan Brookhart. 2009. “High-Dimensional Propensity Score Adjustment in Studies of Treatment Effects Using Health Care Claims Data.”Epidemiology (Cambridge, Mass.) 20 (4): 512.