10  Developments

Causal inference literature, following developments are gaining popularity:

10.1 TMLE

  • Pang et al. 2016 Epidemiology
  • Pang et al. 2016 Int. J Biostat.
  • Ju et al. 2019 Stat Meth Med Res.
  • Parametric versions implemented
  • Super learner could be very time consuming

(Pang, Schuster, Filion, Eberg, et al. 2016; Pang, Schuster, Filion, Schnitzer, et al. 2016; Ju, Gruber, et al. 2019)

10.2 Super learner

  • Wyss et al. 2018 Epidemiology
  • Ju et al. 2019 J App Stat.
  • Parametric versions implemented, or
  • Bias not used as a performance measure

(Ju, Combs, et al. 2019; Wyss et al. 2018)

10.3 Cross-validation

10.4 Super learner guideline

10.5 Cross-fitting and double robust

Zivich and Breskin (2021): Cross-fitting + together with double robust approaches in low-dimensional setting

Tip

We want to assess the performance in the high-dimensional setting when

  • many proxies (some irrelevant) are available.
  • complex structure is present.