Balzer, Laura B, and Ted Westling. 2021.
“Demystifying Statistical Inference When Using Machine Learning in Causal Research.” American Journal of Epidemiology.
https://doi.org/10.1093/aje/kwab200.
Ju, Cheng, Mary Combs, Samuel D Lendle, Jessica M Franklin, Richard Wyss, Sebastian Schneeweiss, and Mark J van der Laan. 2019. “Propensity Score Prediction for Electronic Healthcare Databases Using Super Learner and High-Dimensional Propensity Score Methods.” Journal of Applied Statistics 46 (12): 2216–36.
Ju, Cheng, Susan Gruber, Samuel D Lendle, Antoine Chambaz, Jessica M Franklin, Richard Wyss, Sebastian Schneeweiss, and Mark J van Der Laan. 2019. “Scalable Collaborative Targeted Learning for High-Dimensional Data.” Statistical Methods in Medical Research 28 (2): 532–54.
Naimi, Ashley I, Alan E Mishler, and Edward H Kennedy. 2021.
“Challenges in Obtaining Valid Causal Effect Estimates with Machine Learning Algorithms.” American Journal of Epidemiology.
https://doi.org/10.1093/aje/kwab201.
Pang, Menglan, Tibor Schuster, Kristian B Filion, Maria Eberg, and Robert W Platt. 2016. “Targeted Maximum Likelihood Estimation for Pharmacoepidemiologic Research.” Epidemiology (Cambridge, Mass.) 27 (4): 570.
Pang, Menglan, Tibor Schuster, Kristian B Filion, Mireille E Schnitzer, Maria Eberg, and Robert W Platt. 2016. “Effect Estimation in Point-Exposure Studies with Binary Outcomes and High-Dimensional Covariate Data–a Comparison of Targeted Maximum Likelihood Estimation and Inverse Probability of Treatment Weighting.” The International Journal of Biostatistics 12 (2).
Phillips, Rachael V, Mark J van der Laan, Hana Lee, and Susan Gruber. 2023.
“Practical Considerations for Specifying a Super Learner.” International Journal of Epidemiology.
https://doi.org/10.1093/ije/dyad023.
Wyss, Richard, Sebastian Schneeweiss, Mark Van Der Laan, Samuel D Lendle, Cheng Ju, and Jessica M Franklin. 2018. “Using Super Learner Prediction Modeling to Improve High-Dimensional Propensity Score Estimation.” Epidemiology 29 (1): 96–106.
Zivich, Paul N, and Alexander Breskin. 2021. “Machine Learning for Causal Inference: On the Use of Cross-Fit Estimators.” Epidemiology (Cambridge, Mass.) 32 (3): 393.