code appeared at least more than the 75th percentile
D64.9 Anemia
rec_dx_D64_once
rec_dx_D64_sporadic
rec_dx_D64_frequent
D75.9P Blood clots
rec_dx_D75_once
rec_dx_D75_sporadic
rec_dx_D75_frequent
D89.9 Immune disorder
rec_dx_D89_once
rec_dx_D89_sporadic
rec_dx_D89_frequent
\(\ldots\)
\(\ldots\)
\(\ldots\)
\(\ldots\)
E07.9 Disorder of thyroid
rec_dx_E07_once
rec_dx_E07_sporadic
rec_dx_E07_frequent
Example of 3 binary covariates (hypothetical) created based on the candidate empirical covariates.
6.3 Recurrence covariates in the data
out2 <- step2$recurrence_datancol(out2)#> [1] 143
Here we show binary recurrence covariates for only 2 columns
6.4 Refined recurrence covariates
Below you can click to see a list of all recurrence covariates obtained in our data.
ICD-10 Recurrence Data
1
rec_dx_A49_once
rec_dx_B00_once
rec_dx_B20_once
2
rec_dx_B20_frequent
rec_dx_B35_once
rec_dx_B37_once
3
rec_dx_B96_once
rec_dx_C50_once
rec_dx_D75_once
4
rec_dx_E03_once
rec_dx_E04_once
rec_dx_E05_once
5
rec_dx_E07_once
rec_dx_E28_once
rec_dx_E28_frequent
6
rec_dx_E29_once
rec_dx_E78_once
rec_dx_E79_once
7
rec_dx_E87_once
rec_dx_F17_once
rec_dx_F20_once
8
rec_dx_F20_frequent
rec_dx_F29_once
rec_dx_F31_once
9
rec_dx_F31_frequent
rec_dx_F32_once
rec_dx_F39_once
10
rec_dx_F41_once
rec_dx_F43_once
rec_dx_F90_once
11
rec_dx_G20_once
rec_dx_G20_frequent
rec_dx_G25_once
12
rec_dx_G30_once
rec_dx_G30_frequent
rec_dx_G31_once
13
rec_dx_G40_once
rec_dx_G43_once
rec_dx_G47_once
14
rec_dx_G89_once
rec_dx_H04_once
rec_dx_H10_once
15
rec_dx_H40_once
rec_dx_H40_frequent
rec_dx_H57_once
16
rec_dx_H57_frequent
rec_dx_H66_once
rec_dx_I10_once
17
rec_dx_I10_frequent
rec_dx_I20_once
rec_dx_I21_once
18
rec_dx_I48_once
rec_dx_I48_frequent
rec_dx_I49_once
19
rec_dx_I50_once
rec_dx_I50_frequent
rec_dx_I51_once
20
rec_dx_I63_once
rec_dx_I70_once
rec_dx_I80_once
21
rec_dx_I99_once
rec_dx_J01_once
rec_dx_J02_once
22
rec_dx_J20_once
rec_dx_J30_once
rec_dx_J40_once
23
rec_dx_J42_once
rec_dx_J43_once
rec_dx_J43_frequent
24
rec_dx_J44_once
rec_dx_J44_frequent
rec_dx_J45_once
25
rec_dx_J45_frequent
rec_dx_J98_once
rec_dx_K04_once
26
rec_dx_K08_once
rec_dx_K21_once
rec_dx_K25_once
27
rec_dx_K27_once
rec_dx_K30_once
rec_dx_K31_once
28
rec_dx_K58_once
rec_dx_K59_once
rec_dx_K76_once
29
rec_dx_K92_once
rec_dx_L08_once
rec_dx_L20_once
30
rec_dx_L23_once
rec_dx_L29_once
rec_dx_L40_once
31
rec_dx_L70_once
rec_dx_L93_once
rec_dx_L93_frequent
32
rec_dx_M06_once
rec_dx_M06_frequent
rec_dx_M10_once
33
rec_dx_M13_once
rec_dx_M19_once
rec_dx_M1A_once
34
rec_dx_M25_once
rec_dx_M54_once
rec_dx_M62_once
35
rec_dx_M79_once
rec_dx_M81_once
rec_dx_N19_once
36
rec_dx_N20_once
rec_dx_N28_once
rec_dx_N30_once
37
rec_dx_N32_once
rec_dx_N39_once
rec_dx_N40_once
38
rec_dx_N42_once
rec_dx_N52_once
rec_dx_N92_once
39
rec_dx_N94_once
rec_dx_N95_once
rec_dx_R00_once
40
rec_dx_R05_once
rec_dx_R06_once
rec_dx_R07_once
41
rec_dx_R09_once
rec_dx_R10_once
rec_dx_R11_once
42
rec_dx_R12_once
rec_dx_R19_once
rec_dx_R21_once
43
rec_dx_R25_once
rec_dx_R32_once
rec_dx_R35_once
44
rec_dx_R39_once
rec_dx_R41_once
rec_dx_R42_once
45
rec_dx_R45_once
rec_dx_R51_once
rec_dx_R52_once
46
rec_dx_R60_once
rec_dx_R73_once
rec_dx_T14_once
47
rec_dx_T78_once
rec_dx_T88_once
rec_dx_Z79_once
48
rec_dx_Z95_once
Tip
Given that we had one dimension of proxy data, \(p=1\), at most \(n=200\) most prevalent codes (with the restriction that minimum number of patients in each code = 20), and \(3\) intensity, we could theoretically have at most \(p \times n \times 3 = 1 \times 200 \times \ 3 = 600\) recurrence covariates.
Based on all of the restrictions, we created 143 distinct recurrence covariates.
The merged data (analytic and proxies) size is now 7,585.
If 2 or all 3 recurrence covariates are identical, only one distinct recurrence covariate is returned. This is why you do not see any sporadic recurrence covariate here.
Recurrence covariate creation is for each patient, and it is possible to have same code occur multiple time because we are working with a 3 digit granularity (possible to have medications from other codes within same ICD-10 3 digit granularity).
Schneeweiss, Sebastian, Jeremy A Rassen, Robert J Glynn, Jerry Avorn, Helen Mogun, and M Alan Brookhart. 2009. “High-Dimensional Propensity Score Adjustment in Studies of Treatment Effects Using Health Care Claims Data.”Epidemiology (Cambridge, Mass.) 20 (4): 512.