18  Compare results

Summary of model results
OR Beta-coef coef-SE CI (2.5 %) CI (97.5 %) p-value
Crude (no adjustment) 1.94 0.66 0.08 0.51 0.81 < 2e-16
PS (no proxies) 1.89 0.64 0.10 0.53 0.75 < 2e-16
hdPS 1.42 0.35 0.12 0.25 0.46 6.7e-11
Pure LASSO 1.45 0.37 0.10 0.27 0.48 4.7e-12
Hybrid (hdPS, then LASSO) 1.48 0.39 0.10 0.29 0.50 3.9e-13
Super learner (GLM, LASSO, MARS) 1.54 0.43 0.09 0.32 0.54 1.3e-14
TMLE (GLM, LASSO, MARS in SL) 1.47 0.38 0.07 0.24 0.53 2.1e-07
TMLE (only GLM in SL) 1.46 0.38 0.07 0.23 0.52 3.8e-07
Kitchen Sink 1.50 0.41 0.04 0.32 0.48 < 2e-16
Random Forest 1.54 0.43 0.04 0.35 0.51 < 2e-16
XGBoost 1.51 0.41 0.04 0.33 0.49 < 2e-16
Forward Selection 1.56 0.44 0.04 0.36 0.52 < 2e-16
Backward Elimination 1.53 0.43 0.04 0.34 0.50 < 2e-16
  • PS is the result from the propensity score approach that did not include any proxies.
  • Results from this approach is somewhat different than other approaches.
  • More detailed results from simulations are available elsewhere (Karim 2023).

Across all methods evaluated—including hdPS, regularized regression (LASSO, Hybrid), ensemble learners (Super Learner, TMLE), and high-dimensional variable selection strategies (e.g., Kitchen Sink, Random Forest, XGBoost)—adjusted odds ratios ranged from 1.34 to 1.56, with most clustering between 1.50 and 1.56. In contrast, unadjusted and PS-only models produced substantially higher ORs (>1.9).