Chapter 2 Data load

require(plyr) 
require(stringr)
require(mgcv)
require(knitr)

We are using RHC data (Connors et al. 1996) as an example.

load("data/rhcX.RData")
kable(head(rhc))
death swang1 age sex race edu income ninsclas cat1 das2d3pc dnr1 ca surv2md1 aps1 scoma1 wtkilo1 temp1 meanbp1 resp1 hrt1 pafi1 paco21 ph1 wblc1 hema1 sod1 pot1 crea1 bili1 alb1 resp card neuro gastr renal meta hema seps trauma ortho cardiohx chfhx dementhx psychhx chrpulhx renalhx liverhx gibledhx malighx immunhx transhx amihx id
0 0 70.25098 Male white 12.000000 Under $11k Medicare COPD 23.50000 No Yes 0.6409912 46 0 64.69995 38.69531 41 10 124 68.0000 40 7.359375 22.0976562 58.00000 145 4.000000 1.1999512 1.0097656 3.500000 Yes Yes No No No No No No No No 0 0 0 0 1 0 0 0 1 0 0 0 1
1 1 78.17896 Female white 12.000000 Under $11k Private & Medicare MOSF w/Sepsis 14.75195 No No 0.7549996 50 0 45.69998 38.89844 63 38 137 218.3125 34 7.329102 28.8984375 32.50000 137 3.299805 0.5999756 0.6999512 2.599609 No No No No No No No Yes No No 1 1 0 0 0 0 0 0 0 1 1 0 2
0 1 46.09198 Female white 14.069916 $25-$50k Private MOSF w/Malignancy 18.13672 No Yes 0.3169999 82 0 0.00000 36.39844 57 40 130 275.5000 16 7.359375 0.0499954 21.09766 146 2.899902 2.5996094 1.0097656 3.500000 No Yes No No No No No No No No 0 0 0 0 0 0 0 0 1 1 0 0 3
1 0 75.33197 Female white 9.000000 $11-$25k Private & Medicare ARF 22.92969 No No 0.4409790 48 0 54.59998 35.79688 55 26 58 156.6562 30 7.459961 23.2968750 26.29688 117 5.799805 1.6999512 0.3999634 3.500000 Yes No No No No No No No No No 0 0 0 0 0 0 0 0 0 1 0 0 4
1 1 67.90997 Male white 9.945259 Under $11k Medicare MOSF w/Sepsis 21.05078 Yes No 0.4369998 72 41 78.39996 34.79688 65 27 125 478.0000 17 7.229492 29.6992188 24.00000 126 5.799805 3.5996094 1.0097656 3.500000 No Yes No No No No No No No No 0 0 0 0 0 0 0 0 0 0 0 0 5
0 0 86.07794 Female white 8.000000 Under $11k Medicare COPD 17.50000 No No 0.6650000 38 0 54.89999 39.19531 115 36 134 184.1875 68 7.299805 18.0000000 30.50000 138 5.399414 1.3999023 1.0097656 3.099609 Yes No No No No No No No No No 0 1 0 0 1 0 0 0 0 0 0 0 6
ls()
## [1] "Er"       "exposure" "Oformula" "outcome"  "rhc"      "RHScov"   "vars"     "Yr"
set.seed(1)

We will use this data to show how to implement a plasmode simulation (J. M. Franklin et al. 2014) in a binary exposure / outcome data

References

Connors, Alfred F, Theodore Speroff, Neal V Dawson, Charles Thomas, Frank E Harrell, Douglas Wagner, Norman Desbiens, et al. 1996. “The Effectiveness of Right Heart Catheterization in the Initial Care of Critically III Patients.” Jama 276 (11): 889–97. https://tinyurl.com/Connors1996.
Franklin, J. M., S. Schneeweiss, J. M. Polinski, and J. A. Rassen. 2014. “Plasmode Simulation for the Evaluation of Pharmacoepidemiologic Methods in Complex Healthcare Databases.” Computational Statistics & Data Analysis 72: 219–26.