

Digital Public Health Seminar Series 2024

How Machine Learning Can Be Utilized in Causal Inference

Momenul Haque Mondol PhD Student, SPPH, UBC

Co-author:

Dr. Mohammad Ehsanul Karim

Funding:

- Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant
- UBC Work Learn program

Background

- Right heart catheterization (RHC) measures heart and pulmonary artery pressures in critically ill patients. This procedure can guide treatment decisions, improve outcomes, and potentially reduce ICU mortality risk.
- 5,735 ICU patients from USA hospitals between 1989 and 1994. (Connors et al., 1996)

49 characteristics of ICU patients were measured at baseline.

Prediction vs Causal Question

 We estimate death status (in prediction), but estimate RHC→Death association (in causal inference)

Use of Machine Learning

- Single machine learning algorithm may not be adequate.
- Multiple algorithms can offer more diverse learning experience (Super learner).

Super Learner

Super-Learner is a weighted prediction of several machine learning algorithms.

Use of Machine Learning

TMLE

- Same data is utilized for model development, prediction, and ATE calculation
- Flexible machine learning is prone to overfitting that may result in bias and under-coverage.(Naimi et al., 2021)

Double Cross-fit TMLE (Zivich 2021)

Apply Double Cross-fit TMLE

- Double Cross-fit TMLE can be applied by R package "crossfitTMLE". (Mondol and Karim, 2023)
- We applied:
 - 3 splits (although >3 splits is possible)
 - LASSO, Random Forest, and Gradient Boosting
 - Repetition 100
- Estimated Risk Difference (RD) 0.057 (95% CI: 0.041, 0.072)
- The analysis took 1 hour and 36 mins to execute without parallel computing.

Comparison

ML: LASSO, Random Forest, Gradient Boosting learners under Super-Learner

Summary

Machine learning tools are alternative to standard statistical models (and sometimes better) in causal inference. However but we need to use them appropriately-

- Double robust methods (e.g., TMLE) and double cross-fit
- A diverse set of learners instead of single learner
- Include necessary interactions and polynomial terms of confounders

References

- Description of the question and data set (DOI: 10.1001/jama.276.11.889)
- Double cross-fit TMLE is described here (DOI: 10.1097/EDE.000000000001332)
- Flexible machine learning requires cross-fitting (DOI: 10.1093/aje/kwab201)
- 4. R package for double cross-fit TMLE

(https://github.com/momenulhaque/crossfitTMLE)

Appendix

DC-TMLE can be applied as follows (Mondol and Karim, 2023)

```
library(crossfitTMLE)
library(SuperLearner)
DC_tmle <- crossfitTMLE(data = ObsData,</pre>
                         exposure = "A",
                         outcome = "Y",
                         covarsT = L,
                         covars0 = L.
                         family.y = "binomial",
                         learners = c("SL.g]mnet", "SL.randomForest",
                                      "SL.xgboost"),
                         control = list(V = 5, stratifyCV = FALSE,
                                        shuffle = TRUE, validRows = NULL),
                         num_cf = 10,
                         n_{split} = 3.
                         seed = 2575.
                         conf.level = 0.95, stat = "median")
```