Missing Data Analyses FAQ

Ehsan Karim

ehsan.karim@ubc.ca SPPH 604 Discussions

MAR vs. MCAR: MCAR missingness doesn't follow any pattern. From empirical data, we may be able to disprove this (reject null hypothesis of MCAR if there is a pattern).

While it may be possible to reject MCAR (meaning either MAR or MNAR is more likely), it is not possible to say which one is more likely (MAR or MNAR) just based on data analysis.

Amaranth purple

Complete Case

RESEARCH ARTICLE

When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts

Janus Christian Jakobsen^{1,2*}, Christian Gluud¹, Jørn Wetterslev¹ and Per Winkel¹

Rule of thumb:

Complete case (CC) analysis could be used as the primary analysis if

- % of missing observations (for all variables combined) are below ~5%
- When potential impacts of the presence of missing data is negligible
- Best-worst and worst-best case sensitivity analyses could be used as a sensitivity analysis
 - SES = 1 for all missing vs. SES = 5 for all)
- Only outcome variable (of primary analysis) has missing, CC will be more efficient than MI.
- If relatively certain that the data are MCAR (don't base your decision solely on Little's test) https://ehsanx.github.io/EpiMethods/missingdata6.html

Book © 1994

Logistic Regression with Missing Values in the Covariates

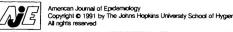
Authors: Werner Vach

Part of the book series: Lecture Notes in Statistics (LNS, volume 86)

Harsh words from methodologists; so could be the thought process of the reviewer! Hence, if using an ad hoc method, should have a very clear justification!!

Ad hoc methods

It is often supposed that there exists something like a critical missing rate up to which missing values are not too dangerous. The believe in such a global missing rate is rather stupid. Moreover, all investigations in this book demonstrate that the variation of the missing rates among subgroups is the key to relevant statistical properties of any method to handle missing values. This concerns the bias of Complete Case Analysis and other ad hoc methods as well as the efficiency of sophisticated methods.



Biased Estimation of the Odds Ratio in Case-Control Studies

Copyright @ 1991 by The Johns Hopkins University School of Hyggene and Public Health

due to the Use of Ad Hoc Methods of Correcting for Missing Values for Confounding Variables

Werner Vach1 and Maria Blettner2

American Journal of

December 15, 1995

School of Hygiene and Public Health Sponsored by the Society for Epidemiologic Research

Copyright @ 1995 by The Johns Hopkins University

REVIEWS AND COMMENTARY

A Critical Look at Methods for Handling Missing Covariates in Epidemiologic Regression Analyses

If a categorical variable e.g., education level has missing data, creating a "Missing" category treats the lack of information as if it's a valid education category (similar to "High School" or "College"). However, there is no substantive meaning to this "Missing" group in the context of education.

Consequence of adding a

Missing category

noticeable bias if the categorical

Adding a "missing" category can lead to

covariate is an important confounder.

American Journal of Epidemiology Copyright @ 1991 by The Johns Hopkins University School of Hyggene and Public Health Vol 134, No 8

Consequence of adding a Missing category

Biased Estimation of the Odds Ratio in Case-Control Studies due to the Use of Ad Hoc Methods of Correcting for Missing Values for Confounding Variables

Werner Vach1 and Mana Blettner2

American Journal of

Number 12

School of Hygiene and Public Health

December 15, 1995

Copyright @ 1995 by The Johns Hopkins University Sponsored by the Society for Epidemiologic Research

REVIEWS AND COMMENTARY

A Critical Look at Methods for Handling Missing Covariates in Epidemiologic Regression Analyses

In a study on health outcomes, if lower-income individuals are more likely to have missing data for their income (an MNAR scenario, discussed later), creating a "Missing" category may falsely dilute or mask the relationship between income and health. As a result, the model might underestimate the effect of income on health outcomes.

When Single imputation (SI) may be preferred

RESEARCH ARTICLE

When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts

Janus Christian Jakobsen^{1,2*}, Christian Gluud¹, Jørn Wetterslev¹ and Per Winkel¹

- When only outcome variable is missing and auxiliary variables (surrogate / proxy) are available, SI may be better than CC (particularly when variable has substantial amount of missing).
- When missingness is monotone (e.g., value only increases), SI can be straightforward (so is MI)
- For clinical trials, SI is often preferred to impute baseline covariates.
- For prediction problems, while using machine learning methods (e.g., CART) with some more flexibility, but pooling is not straightforward for these approaches (prediction averaging is possible as an alternative).

In single imputation using hot-deck imputation, you are filling the missing data with the response of one person picked at random from a pool of donors who match on key variables. You do not take the average of the sample. The imputed value comes directly from a randomly selected individual from the matched group, ensuring that the imputed value is a realistic value that exists in the dataset.

Flexible Imputation of Missing Data

SECOND EDITION

Stef van Buuren

Chapter 3

Dealing with non-normal data

MVN

- Works with joint model
- Continuous variables only
- Rubin's rule was defined under MVN

MICE

- Works on a variable by variable basis
- One approach: Transform before imputing for non-normal and transform-back after imputation in original scale

Flexible Imputation of Missing Data

SECOND EDITION

Stef van Buuren

Chapter 3

Dealing with non-normal data

Transforming may have potential pitfalls:

- Distortion of relationships between variables after transformation.
- Loss of interpretability of results on the original scale.
- Inability of some transformations to handle negative or zero values.
- Back-transformation may underestimate variance.

See later regarding alternative methods within MICE.

Flexible Imputation of Missing Data

SECOND EDITION

MICE

Steps

Multiple imputation (MI)

- [s0] construct a imputation model to predict the missing
 - fit this model to the observed data
 - missing data are sampled from the predictive distribution p() of the fitted model
- [s1] Create m (5-20) copies of the dataset (40?)
 - impute the missing values with from p()
 - to generate m complete-case datasets
 - induces variation
 - [s2] Perform the same analysis on all of the m datasets.
 - get individual estimates
- [s3] pool/average results to get single estimate & SE

Implementation pred

model(s)

pred <- ini\$pred

age

cholesterol ## diastolicBP

ini <- mice(data=NHANES17s, maxit = 0, print = FALSE)

age bmi cholesterol diastolicBP

[s0] construct a imputation model to predict the missing Good to check as an exploratory test; but may be harder to justify if deleting an important known predictor of the

MICE

Implementation

Step 0
(update
imputation

on empirical

models based

data)

imputation target

To influence the choice of number of predictors, we can choose different values of

- **mincor** (eliminates predictors whose correlation with imputation model target/outcome is below 0.1) and
- **minpuc** (eliminates predictors whose proportion of usable cases are below 0.1) (tuning parameters)

Consideration for choosing variables for the imputation model

Imputation model should include *all*

variables and interactions that will be used in **Implementation** the *analysis model*

> outcome variable of the analysis model Auxiliary variables (those that are not in

- analysis model; inclusion improves efficiency) variables related to the *missingness / nonresponse*
 - variables that are correlated / proxy / surrogate for the missing variable (mincor)
 - survey feature variables while using complex survey data
 - Use component variables if imputing derived variable (BMI)
- Remove variables with too many missing (minpuc)

Step 0 (update

imputation models based

on empirical data)

issues in imputation model building The implementation in mice can

Potential overfitting / collinearity

Implementation Step 0

- detect multicollinearity. As a general solution, the algorithm removes one or more predictors from the model.
- You can turn this option off by using the following mice(..., remove.collinear=FALSE)

of Missing Data SECOND EDITION

Flexible Imputation

Stef van Buuren

Implementation

Step 0

(update

imputation

models based

on empirical

data)

But choosing variable is only one piece of the puzzle of *model building*.

Is interaction helpful? Polynomials?

- See *mice.impute.quadratic*

Other transformations? (non-normal?)

Implementation

##

##

age

Step 0 (imputation

method)

```
meth <- ini$meth
meth
                       bmi cholesterol diastolicBP
           age
##
         "mmm"
# Specifying imputation method:
meth["bmi"] <- "mean"
# for BMI: no predictor used in mean method
# (only average of observed bmi)
meth["cholesterol"] <- "norm.predict"
meth["diastolicBP"] <- "norm.nob"
meth
```

bmi

cholesterol

"mean" "norm.predict"

diastolicBP

"norm.nob"

Aqua

MICE methods

Under MICE, PMM (method = pmm) is a general / robust strategy within MICE for non-normal variables. Since PMM only draws from the observed values, it retains the original data distribution, even if it's skewed or non-normal. It avoids imputing values that don't exist in the data (e.g., extreme or implausible values) and maintains the underlying data characteristics, including skewness or other non-normal features.

Other methods include logistic regression (<u>logreg</u>) or discriminant analysis (<u>lda/qda</u>) for **binary** variables, multinomial logistic regression (<u>polyreg</u>) for **categorical** variables, Poisson regression (<u>poisson</u>) methods for **count** data, with no assumption of normality.

```
Implementation
Step 1
(perform input
m times and
with a set
number of
iterations
for each imputation)
```

70 17,50000

60 15.70000

66 31.70000

70 21.50000

3

mice::complete(imputation4, action = 1) # 1 imputed data

bmi cholesterol diastolicBP

43,09479

71.06049

61.50089

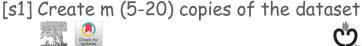
74.00000

187.0885

184.7633

157.0000

148,0000



Canadian Journal of Cardiology 37 (2021) 1322-1331

Review

Missing Data in Clinical Research: A Tutorial on Multiple Imputation

Peter C. Austin, PhD, a,b,c Ian R. White, PhD, Douglas S. Lee, MD PhD, a,b,c,f and Stef van Buuren, PhDg,h

MICE

Implementation

Step 1

(perform input

m times and

with a set

number of

iterations

for each imputation)

Choosing m

- 3-5 (Rubin 1987)
- 5-10 (Schafer SMMR 1999)
- 3. m should be at least as large as the % of subjects with any missing observations (White Royston) Wood, Stat Med 2011)
- 20-100 (Austin et al CJC 2021)

Table 2. Descriptive statistics of case study data

Variable	Mean (SD) or %	No. of subjects with observed data	No. of subjects with missing data	Percentage of subjects with missing data
Continuous variables				
Age, y	76.7 (11.6)	8338	0	0%
Respiratory rate at admission, breaths per minute	24.5 (7.0)	8138	200	2.4%
Glucose (initial lab test), mmol/L	8.6 (4.1)	8051	287	3.4%
Urea (initial lab test), mmol/L	10.3 (6.6)	8028	310	3.7%
LDL cholesterol, mmol/L	2.2 (0.9)	2272	6066	72.8%
Binary variables				*
Female	50.9%	8338	0	0%
S3	6.2%	8126	212	2.5%
S4	2.7%	8135	203	2.4%
Neck vein distension	66.1%	7586	752	9.0%
Cardiomegaly on chest X-ray	47.7%	7711	627	7.5%
Outcome				
Death within 1 year	31.7%	8338	0	0%

Amaranth purple

Review

Missing Data in Clinical Research: A Tutorial on Multiple Imputation

Peter C. Austin, PhD, a,b,c Ian R. White, PhD, Douglas S. Lee, MD PhD, a,b,e,f and Stef van Buuren, PhDg,h

Implementation

Step 1

(perform input

m times and

with a set

number of

iterations

for each imputation)

Choosing number of iterations

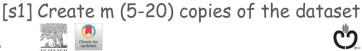
What does it do?

- In MICE, imputation is done iteratively for each variable with missing values.
- Initially, a crude imputation (e.g., mean or mode) is used to fill in missing values for each variable.
- Then, each variable with missing data is imputed in sequence by using a regression model based on the other variables in the dataset. This process continues across all variables with missing data.
- After one round of imputation for all variables with missing values, the next iteration (cycle) begins. In each new iteration, the values imputed in previous steps are updated.
- The **maxit** parameter controls how many of these iterations (cycles) are carried out. Each iteration updates the imputed values as more accurate predictions are made based on the progressively imputed data from earlier steps.

After a certain number of iterations, the **imputed values typically stabilize**. This means that additional iterations no longer cause substantial changes in the imputed values. This is known as **convergence**.

Recall the imputation we have done before

imputation5 <- mice(NHANES17s, seed = 504,



Review

Missing Data in Clinical Research: A Tutorial on Multiple Imputation

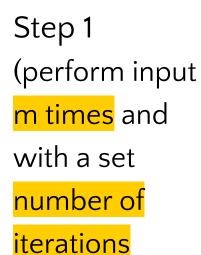
Peter C. Austin, PhD, a,b,c Ian R. White, PhD, Douglas S. Lee, MD PhD, a,b,c,f and Sref van Buuren, PhD, B,b,c,f

imputation5 2 <- mice(NHANES17s, seed = 504,

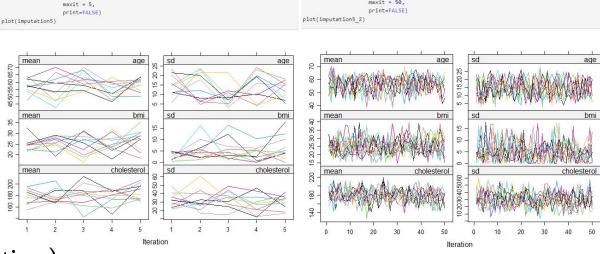
Choosing number of iterations

Implementation

MICE



for each imputation)



Healthy convergence

```
MICE
Implementation
Step 2
(analyze
m imputed
Datasets:
results in m
estimates)
```

```
## fit model with each of 10 datasets separately
fit4
## call :
## with.mids(data = imputation4, expr = lm(cholesterol ~ age + bmi +
      diastolicBP))
## call1 :
## mice(data = NHANES17s, m = 10, method = meth, predictorMatrix = predictor.selection,
      maxit = 3, seed = 504)
## nmis :
                     bmi cholesterol diastolicBP
          age
           10
## analyses :
                                       Each model also reports estimated
## [[1]]
                                       variance of beta (not shown here)
## Call:
## lm(formula = cholesterol ~ age + bmi + diastolicBP)
         beta-hat (estimated coef) of age from 1st imputed data
## Coefficients:
## (Intercept)
                                       diastolicBP
                      age
     223.6247
                   -0.2451
                               -0.5313
                                           -0.2360
## [[2]]
## Call:
## lm(formula = cholesterol ~ lage + bmi + diastolicBP) of age from 2nd imputed data
## Coefficients:
## (Intercept)
                      age
                                       diastolicBP
    182.20646
                  0.11301
                              -0.51604
                                           0.06201
```

Step 2 [s2] Perform the same analysis on all of the m datasets.

fit4 <- with(data = imputation4, exp = lm(cholesterol ~ age + bmi + diastolicBP))

```
[s3] pool/average results to get single estimate & SE
                             # Step 3 pool the analysis results
                             est1 <- mice::pool(fit4)
                             ## pool all estimated together using Rubin's rule
 Jazzberry jam
                             est1
MICE SE Calculation
                              ## Class: mipo
                                                    estimate
                                                                                              t dfcom
                             ## 1 (Intercept) 10 191.75235231 2057.0885845 294.10339407 2380.6023180
                                                                                                   26
                                                              0.1574602
                             ## 2
                                         age 10 -0.01744064
                                                                         0.08537473
                                                                                       0.2513724
                                                                                                   26
Implementation
                                         bmi 10 -0.52020777
                                                              0.8761047
                                                                          0.01407600
                                                                                       0.8915883
                                                                                                   26
                              ## 4 diastolicBP 10 0.03115837
                                                              0.2723272
                                                                        0.07446759
                                                                                       0.3542416
                                                                                                   26
Step 3 (pool)
                                                 riv
                                                        lambda
                                                                     fmi
                             ## 1 20.05643 0.15726777 0.13589575 0.21085134
                             ## 2 12.27637 0.59641863 0.37359789 0.45560717
```

```
estimate = pooled estimate = sum of (m "beta-hat" estimates) / m (mean of m estimated statistics)
```

3 23.76757 0.01767323 0.01736631 0.09078603 ## 4 16.75666 0.30079385 0.23123868 0.30906167

<u>ubar</u> = sum of (m variance[beta] estimates) / m = within-imputation variance (mean of estimated variances) b = variance of (m "beta-hat" estimates) = between-imputation variance (degree to which estimated statistic / "beta-hat" varies across m imputed datasets). This b is not available for single imputation when m = 1.

t = ubar + b + b/m = total variance according to Rubin's rules (within-imputation & between imputation variation) riv = relative increase in variance dfcom = df for complete lambda = proportion of variance to due nonresponse

df = Barnard-Rubin correction fmi = fraction of missing information per parameter

Variable selection

Majority

```
## Set up the stepwise variable selection, from null model to full model
scope <- list(upper = ~ age + bmi + cholesterol,
              lower = ~ age)
## Set up the stepwise variable selection, from important only model to full model
expr <- expression(f1 <- lm(diastolicBP ~ age),
                   f2 <- step(f1, scope = scope, trace = FALSE))
fit5 <- with(imp, expr)
## apply stepwise on each of the imputed dataset separately
formulas <- lapply(fit5$analyses, formula)</pre>
## fit5$analyses returns the selection result for each imputed dataset
terms <- lapply(formulas, terms)
votes <- unlist(lapply(terms, labels))</pre>
## look at the terms on each models
table(votes)
```

```
## votes
## age bmi cholesterol
## 100 9 3
```


Stack

```
Stack.data <- mice::complete(imp, action="long")
head(Stack.data)
```

```
.imp .id age bmi cholesterol diastolicBP
## 1
           1 60 17.5
                             152
                                         88
           2 22 15.7
## 2
                             213
                                         62
          3 66 31.7
## 3
                             157
                                         66
           4 72 21.5
## 4
                             148
                                         74
## 5
           5 22 18.1
                             189
                                         38
## 6
           6 66 23.7
                             209
                                         74
```

```
tail(Stack.data)
```

```
.imp .id age bmi cholesterol diastolicBP
## 2995
        100
            25 70 23.9
                                167
                                             68
## 2996
            26 53 33.4
        100
                                143
                                             74
## 2997
        100
            27 42 27.6
                                165
                                             86
## 2998
        100
             28
                 57 28.6
                                221
                                             74
## 2999
        100
             29
                 20 27.6
                                153
                                             54
## 3000
       100
            30 72 21.3
                                143
                                             76
```

fitx <- lm(diastolicBP ~ age + bmi + cholesterol, data = Stack.data)
fity <- step(fitx, scope = scope0, trace = FALSE)</pre>

Variable selection

Wald

```
# m = 100
fit7 <- with(data=imp, expr=lm(diastolicBP ~ 1))

fit8 <- with(data=imp, expr=lm(diastolicBP ~ bmi))

# The D1-statistics is the multivariate Wald test.</pre>
```

use Wald test to see if we should add bmi into the model stat

stat <- D1(fit8, fit7)

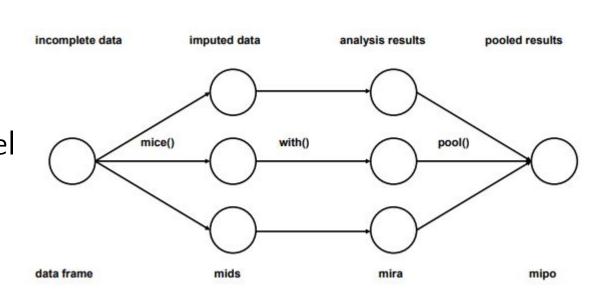
```
## test statistic df1 df2 dfcom p.value riv
## 1 ~~ 2 0.106245 1 22.81086 28 0.7474317 0.6516617
```

which indicates that adding bmi into our model might not be useful

Difference?

Same model
 vs. different
 models in
 majority rule

– pool

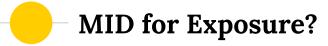


Sheen Green, Amaranth purple

"Multiple imputation followed by deletion of imputed outcomes is known as MID. This is very popular, especially when you have high percentage missing values in the outcome variable (e.g., 20%–50%). For low missing % in outcome, the advantage can be minimal."

https://ehsanx.github.io/EpiMethods/missingdata3.html

Sheen Green



Same idea. See lab above for an example.

Outcome and exposure has missing

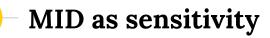
This chunk focuses on identifying which rows have missing values in both the outcom exposure variables are crucial for the analysis, so understanding where they are missi

```
1  # assume outcome = bmi and exposure = chl
2  nhanes2.excludingYA <- subset(nhanes2, !is.na(bmi) & !is.na(chl) )
3  nhanes2.excludingYA # data without missing A and Y</pre>
```

Design, subset and fit

For each imputed dataset, a statistical model is fitted. Before fitting, the dat rows without originally missing outcome and exposure values are used for r dataset are stored for later analysis.

```
require(survey)
    fit.list <- vector("list", 5)
    for (i in 1:m) {
      analytic.i <- data.list[[i]]</pre>
      # assigning survey features = 1
      w.design0 <- svydesign(id=~1, weights=~1,
 6
 7
                              data=analytic.i)
 8
      w.design <- subset(w.design0, miss == 0)</pre>
 9
      fit <- svyglm(formula, design=w.design, family=binomial)</pre>
10
      fit.list[[i]] <- fit
11
```



When in doubt (or % in between), you can always assess the robustness of your results. You may consider performing a sensitivity analysis where

- you impute the Outcome/Exposure and
- compare results with those where the
 Outcome/Exposure was left unimputed.

This can help gauge the impact of any imputation bias.

– MNAR

MNAR means that the probability of data being missing is related to the unobserved (missing) values themselves.

MNAR example

If sicker patients are more likely to drop out of a study, their missingness is related to their health condition. In this case, the reason a patient drops out (and thus has missing data) is because of their health status. Importantly, this health status (e.g., their worsening condition or more severe symptoms) is unobserved for those who drop out. If you tried to explain the dropout using only the observed data (e.g., the baseline health condition or other demographic characteristics), you might not fully capture the reason for dropout, because it's specifically related to the worsening health condition, which you don't have data on for those who dropped out.

Why MNAR produces bias?

- Standard statistical methods (e.g., complete case analysis or MAR-based imputation techniques) assume that missingness is either random or can be predicted by other observed variables. With MNAR data, this assumption doesn't hold, leading to biased parameter estimates.
- Since the missingness mechanism depends on the unobserved values, it's impossible to directly observe the cause of missingness, making it hard to model or adjust for.

MNAR & subsequent

Atomic Tangerine

sensitivity analysis

under different assumptions (e.g., of Missing Data assume different values for those with missing data: best health and worst health for the unobserved health condition) and compare how sensitive your

results are to these assumptions.

You can impute missing values Flexible Imputation

SECOND EDITION Stef van Buuren

Chapter 9

Delta-adjustment or adding offset in the imputed values

	δ	Difference	δ <125	mmHg	125–140 mr	nHg	>200 mm	Hg	
	0	-8.2	0	1.76	(1.36-2.28)	1.43	(1.16-1.77)	0.86	(0.44-1.67)
	$-\overline{5}$	-12.3	-5 -10	$\frac{1.81}{1.89}$	(1.42-2.30) (1.47-2.44)	$\frac{1.45}{1.50}$	$(1.18-1.79) \ (1.21-1.86)$	$0.88 \\ 0.90$	$(0.50-1.55) \ (0.51-1.59)$
	-10°	-20.7	-15	1.82	(1.39-2.40)	1.45	(1.14–1.83)	0.88	(0.49-1.57)
	-15	$-26.1 \\ -26.1$	-20	1.80	(1.39-2.35)	1.46	(1.17 – 1.83)	0.85	(0.48-1.50)
	$-10 \\ -20$		CCA	1.76	(1.36-2.28)	1.48	(1.19 - 1.84)	0.89	(0.51 - 1.57)
-	-20	-31.5							

data as a function of delta"

"HR estimates under the different scenarios for 3 systolic BP groups" "differences in means between the imputed and observed

Thanks.

ehsan.karim@ubc.ca

www.ehsank.com

Briefly mentioned in the lecture, but mostly beyond the scope of current

Combined MSM Estimates

Practice of Epidemiology

Dealing With Treatment-Confounder Feedback and Sparse Follow-up in Longitudinal Studies: Application of a Marginal Structural Model in a Multiple

Mohammad Ehsanul Karim*, Helen Tremlett, Feng Zhu, John Petkau, and Elaine Kingwell

Multilevel modelling

pmm, heteroscedastic, mvmeta

Many 2l methods developed

Flexible Imputation of Missing Data

SECOND EDITION

micemd

21.2stage.pmm

51	COND EDITION	14			
Stef van Buuren 👩					
Package	Method	Description			
Continuous	e - construir in a l	2000			
mice	21.lmer	normal, lmer			
mice	21.pan	normal, pan			
miceadds	21.continuous	normal, lmer, blme			
micemd	21.jomo	normal, jomo			
micemd	21.glm.norm	normal, lmer			
mice	21.norm	normal, heteroscedastic			
micemd	21.2stage.norm	normal, heteroscedastic			
Generic					
miceadds	21.pmm	pmm, homoscedastic, 1mer			

Table 3. Findings From the Marginal Structural Model^{a,b} of the Mortality Hazard With at Least 6 Contiguous Months of Beta-Interferon Exposure in Multiple Sclerosis Patients From British Columbia, Canada, 1996-2013

course

Imputation Method	Function	Maximum Weight ^e			
10 (0.00) • The development of the Control of the C			HR ^g	95% CI	
Single level (no cluster)					
Proportional odds logistic regression	polr	4.45	0.53	0.35, 0.79	
Multinomial regression	polyreg	3.50	0.53	0.35, 0.79	
PMM	pmm	2.51	0.53	0.35, 0.79	
Classification and regression trees	cart	3.60	0.52	0.35, 0.78	
Linear discriminant analysis	lda	4.10	0.53	0.35, 0.79	
Multilevel (cluster) ^h					
PMM using linear mixed model	2I.pmm	2.51	0.53	0.35, 0.79	
Linear mixed model (Gibbs sampler)	2l.pan	3.27	0.53	0.35, 0.79	

Abbreviations: CI, confidence interval; HR, hazard ratio; MSM, marginal structural model; PMM, predicted mean matching.

b Expanded Disability Status Scale values imputed using multiple imputation approaches.

^c The following variables were selected as predictors for imputing Expanded Disability Status Scale values for all imputation methods: sex, age, disease duration, calendar year, and socioeconomic status at baseline; the event of death and the Nelson-Aalen estimate of cumulative hazard; concurrent beta-interferon exposure, other DMD exposure, and comorbidity burden; and an index variable representing follow-up time.

d Functions within "mice" or "miceadds" R (R Foundation for Statistical Computing, Vienna, Austria) packages.

Mean inverse probability of treatment and censoring weights for all of these imputation methods were close to 1; maximum weights among 30 imputations.

f For each imputation method, the multiple imputation results from 30 imputed data sets were combined using Rubin's rules (Rubin's estimators of the point estimate and the standard error).

9 The E-value for the beta-interferon HR is 2.47 for the null value 1 for the common outcome assumption. The corresponding E-value for the

upper confidence limit is 1.63. h Subject identification number was used as cluster-level variable for the multilevel imputation methods.

a Beta-interferon exposure was treated as a time-dependent variable in the MSM (weighted Cox regression model). Sex, age, disease duration, calendar year, and socioeconomic status were measured at baseline and included as covariates in all models, together with timedependent beta-interferon exposure.