Survival Analysis

ehsan.karim@ubc.ca Nov 5, 2020 SPPH 504/007

Reference

• Survival Analysis- A Self-Learning Text

Third Edition

by David G. Kleinbaum and Mitchel Klein Springer Publishers New York, Inc. 2011

Survival analysis

- Time / survival time
 - months,
 - weeks, or
 - o days

from the beginning of follow-up of an individual until an event occurs.

- Event / failure (X)
 - disease incidence / death,
 - relapse from remission,
 - recovery (e.g., return to work) or
 - any designated experience of interest

that may happen to an individual.

Survival analysis

- Survival analysis is a collection of statistical procedures for data analysis for which the **outcome variable** of interest is
 - time until an event occurs.

Leukemia patients in remission:

Censoring: Don't know survival time exactly

 Censoring occurs when we have some information about individual survival time, but we don't know the survival time exactly.

Leukemia patients in remission:

Reasons for Censoring

Survival data format

Anderson Data

3.28

1.97

2.73

2.95

EPIB 591

treatment

placebo

placebo

placebo

placebo

*anderson.sav [DataSet3] - IBM SPSS Statistics Data Editor

event

event

event

event

event

21

22

23

24

25

6

23

22

17

15

<u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform /	<u>A</u> nalyze <u>G</u> rapl	hs <u>C</u> ustom	<u>U</u> tilities Add- <u>o</u> r	ns <u>W</u> indow <u>H</u>	
		r 🤉 🦉					
	survt	status	sex	logwbc	group	lwbc3	
6	9	censored	female	2.80	treatment	2	
7	7	event	female	4.43	treatment	3	
8	6 censored		female	3.20	treatment	3	
9	6	event	female	2.31	treatment	2	
20	6	event	male	4.06	treatment	3	

female

female

female

female

male

1 = placebo, 0 = treatment

3

1

2

2

Censoring Types

- True survival time is equal to or greater than observed survival time = Right-censored
- True survival time is less than or equal to the observed survival time = Left-censored
- True survival time is within a known time interval = Interval-censored

Note: The presence of **non-independent censoring** typically affects the validity of estimated effect.

Functions: survival

• The survivor function S(t) gives the probability that a person survives longer than some specified time t.

- The two functions are somewhat closer together in the first few weeks of follow-up, but thereafter are quite spread apart.
- This widening gap suggests that the treatment is more effective later during follow-up than it is early on.

Functions: hazard

• The hazard function h(t) gives $h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$ the instantaneous potential per unit time for the event to occur, given that the individual has survived up to time t.

• Leukemia patients:

• Group 1 is the treatment group, and group 2 is the placebo group.

• We can fit a Cox Proportional Hazard model to get an estimate of the treatment effect.

Cox PH

Model: survival ~ group

Variables in the Equation									
							95.0% CI for Exp(B)		
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper	
Treatment	1.509	.410	13.578	1	.000	4.523	2.027	10.094	

 Exp(B) gives an estimated hazard ratio (HR) for the effect of treatment group (similar to OR from logistic).

Cox PH

Model: survival ~ group (crude model)

1

Variables in the Equation										
							95.0% CI 1	for Exp(B)		
	в	SE	Wald	df	Sig.	Exp(B)	Lower	Upper		
Treatment	1.509	.410	13.578	1	.000	4.523	2.027	10.094		

Model: survival ~ group + logWBC (adjusted by

logWBC)

Variables in the Equation										
3	2				3	i li	95.0% CI f	% CI for Exp(B)		
	в	SE	Wald	df	Sig.	Exp(B)	Lower	Upper		
Treatment	1.294	.422	9.399	1	.002	3.648	1.595	8.343		
log WBC	1.604	.329	23.732	1	.000	4.975	2.609	9.486		

Survival Curves from Cox

• Kaplan-Meier Curve

 Survival curve from Cox (from adjusted fit)

Assumptions for Cox

- The Proportional Hazard (PH) assumption requires that the hazard for <u>one individual is</u> <u>proportional to the hazard for</u> <u>any other individual</u>,
 - where the proportionality constant is independent of time.

Stratified Cox

Thanks!

ehsan.karim@ubc.ca