Survey Data Analysis Recap of many ideas already explored

ehsan.karim@ubc.ca Sept 24, 2019 SPPH 504/007

Pearson's chi-squared test is used for

A test of goodness of fit establishes whether an observed frequency distribution differs from a theoretical distribution.

A test of homogeneity compares the distribution of counts for two or more groups using the same categorical variable.

A test of independence assesses whether observations consisting of measures on two variables, expressed in a contingency table, are independent of each other.

What is Hosmer–Lemeshow test?

explains the proportion of variance in the dependent variable that is explained by the predictors

a test that is used to evaluate the statistical significance of each coefficient in the model

a statistical test for goodness of fit for logistic regression models

assesses the relative importance of individual predictors in the model

Reference

- Heeringa, S. G., West, B. T., & Berglund, P. A. (2010).
 Applied survey data analysis. [edition 1] Chapman and Hall/CRC. [eBook available at UBC]
 - \circ All of the blue page numbers are from here
- 2nd edition available (2017), but eBook not available now at UBC.

From first class

Design-based vs. Model based inference

- The difference between
 - Design-based (finite population/data could be unknown but fixed population/does not support generalization to other population) and
 - Model-based (infinite population/a random process that generates data) inference

is the population to which the results can be generalized.

• Analysis of complex survey is: design-based (usually).

General survey data sources

- CCHS
- NHANES
- BRFSS
- KNHANES
- HRS
- NCS-R
- ESS

- survey of the adult, noninstitutionalized population of the <u>United States</u>
- Let's say, we are interested in cycle 2007-08
- contains data from <u>10,149 individuals</u> of all ages.
- an <u>in-home medical history interview</u> with sample respondents
- (there is also a medical examination part)

Sampling Procedure review IIII NHANES:

- NOT obtained via simple random sample.
- <u>multistage sample designs</u>
 - to increase the convenience of the data collection process (convenience - use clustering)
 - To ensure that we can estimate from each groups of interest with reasonable precision (gender groups / income levels, etc. - use stratification)
 - Generally know as complex survey design

Sampling Procedure review Internet NHANES:

- NOT obtained via simple random sample.
- <u>multistage sample designs</u>

<u>Stage 1</u>: PSU/clusters = geographically contiguous counties. 50 states - divided into ~3100 counties. Each PSU is assigned to a strata (e.g., urban/rural or PSU size etc.). The counties are randomly/PPS selected using a 2-per-stratum design. <u>Complex sample variance estimation requires PSU + strata</u> (masking involved). <u>Stage 2</u>: each selected county is broken into segments (with at least ~50-100 housing units). Segments are randomly/PPS selected. <u>Stage 3</u>: each selected segment is divided into households. Households are randomly selected. <u>Stage 4</u>: Within each sampled household, an individual is randomly selected.

Sampling Procedure review IIII

- NOT obtained via simple random sample.
- <u>multistage sample designs</u>

<u>Stage 1</u>:

- It is a <u>probabilistic sample</u> (we know probability of getting selected for all individuals)
- This sample is unlikely to be representative of the entire population, as
 - some <u>under/oversampling</u> occurs (unlike SRS),
 - samples may be <u>dependent</u> (due to proximity of some samples)
- For example, household with the following characteristics may be oversampled in NHANES:
 - African Americans
 - Mexican Americans
 - Low income White Americans
 - Persons age 60+ years

Sampling Procedure review Im

<u>probabilistic sample</u>

- <u>under/oversampling</u> occurs (unlike SRS),
- samples may be <u>dependent</u> (due to proximity of some samples)

Note that, when complex sampling designs are used to collect data, that invalidates our usual models as the observations are not independent anymore! Beta coefs, p-values, CIs, SEs all are useless in inferring about the population.

interview / sample weight review 🖾

- A sample weight is assigned to each sample person.
- Weight = the number of people in the target population represented by that sample person in NHANES.
 - A respondent's interview weight = 50 means that person represents
 50 people in the target population (US).
- Weights reflect
 - the unequal probability of selection,
 - nonresponse adjustment, and
 - adjustment to independent population controls.

Survey features review

- Interview weight
 - Another weight is for MEC.
- Strata —
- PSU/cluster

cluster ids/PSUs

nested within strata

WTINT2YR - Full Sample 2 Year Interview Weight

	Variable Name:	WTINT:	2YR			
	SAS Label:	Full Sa	mple 2 Year Interview V	Weight		
	English Text:	Interviewed Sample Persons.				
	Target:	Both m	ales and females 0 YEA	RS - 150	YEARS	
	Code or Value		Value Description	Count	Cumulative	Skip to Item
•	2359.373828 to 186295.50665		Range of Values	10149	10149	
			Missing	0	10149	

SDMVSTRA - Masked Variance Pseudo-Stratum

	Talae Debeliption								
Code or Value	Value Description	Count	Cumulative	Skip to Iten					
larget:	Both males and femal	es 0 YEARS	- 150 YEARS						
English Text:	Masked Variance Unit estimation	Pseudo-Str	atum variable for v	ariance					
SAS Label:	Masked Variance Pseu	Masked Variance Pseudo-Stratum							
/ariable Name:	SDMVSTRA								
	/ariable Name: 6AS Label: English Text:	Variable Name: SDMVSTRA SAS Label: Masked Variance Pseu English Text: Masked Variance Unit	Variable Name: SDMVSTRA SAS Label: Masked Variance Pseudo-Stratum English Text: Masked Variance Unit Pseudo-Str	Variable Name: SDMVSTRA SAS Label: Masked Variance Pseudo-Stratum English Text: Masked Variance Unit Pseudo-Stratum variable for variable					

0

10149

SDMVPSU - Masked Variance Pseudo-PSU

Missing

Variable Name:	SDMVPSU
SAS Label:	Masked Variance Pseudo-PSU
English Text:	Masked Variance Unit Pseudo-PSU variable for variance estimation
Target:	Both males and females 0 YEARS - 150 YEARS

Code or Value	Value Description	Count	Cumulative	Skip to Item
1 to 2	Range of Values	10149	10149	15
	Missing	0	10149	

Is it possible to tell from this table how many participants are 90 years old?

Estimates of interest

- We are generally interested in population
- We can, however, make statements about the sample

	Population	Sample
ATE	PATE	SATE

Estimates of interest

- Exposure = rheumatoid arthritis (<u>RA</u>),
- Outcome = myocardial infarction / heart attack (MI)

In a regression: MI ~ RA + covariates, we get OR = 1.54

• No survey features weights or cluster/strata were used in the fitting.

Interpretation: Those <u>who had RA exhibited increased</u> <u>odds</u> of prevalent MI compared to non-RA individuals after controlling for baseline covariates.

OR 1.54 applies to

US population in 2007-08

Surveyed people who were interviewed in NHANES 2007-08

Design effects review design effect (DE) = $D^{2}(\hat{\theta}) = \frac{SE(\hat{\theta})_{complex}^{2}}{SE(\hat{\theta})_{srs}^{2}} = \frac{Var(\hat{\theta})_{complex}}{Var(\hat{\theta})_{srs}}$ Page 24 the ratio of

- a variance of an estimate (e.g., correlation/beta) in a complex sample to
- the variance of the same estimate in a SRS

DE = 2 implies that the variance from complex survey is twice as large as we would expect with SRS. That also implies that if we used complex survey instead of SRS, we would have to use twice the sample size.

Variance estimation

- Standard approaches to calculate SE assume SRS
 - consequently p-values and CIs get distorted

• Doesn't take into account of

- Stratification,
 - requires SE to be computed separately within each stratum, and then combined
- Clustering,
 - strata nested within clusters in NHANES
 - 2 counties per stratum
- Weighting
 - Unequal probability
 - non-response

Variance estimation

- Taylor series approximations [strata and cluster info provided]
 - Sampling error stratum and cluster info are required for this method for variance estimation
- Replication Methods [replicate weights provided]
 - JRR
 - BRR
 - Fay's BRR
 - Bootstrap (Rao-Wu) [Not the same procedure that we have seen earlier]

Comparison of the TSL, JRR, BRR, and Bootstrap Variance Estimation Methods for the Estimation of Descriptive Population Parameters

		Fetimated			Stand	ard Error by N	lethod		
Statistic	n	Mean	SRS	W-BRR	W-JRR	S-TSL	S-BRR	S-JRR	R-Boot
Years of school	9,759	12.31	0.031	0.078	0.077	0.077	0.077	0.077	0.076
Body weight (lbs)	9,759	172.35	0.374	0.447	0.432	0.435	0.434	0.435	0.404
Words recalled	9,759	7.57	0.028	0.064	0.064	0.066	0.066	0.066	0.067

Variance estimation

- That means, all of the Hypothesis testing we were doing under SRS are now invalid
- MLE can't be defined if the samples are not even random
 - Pseudo-likelihood
- Goodness of fit tests also get impacted

Comparisons of Hypothesis Testing Procedures for Simple Random Sample Data versus Complex Sample Survey Data

Other useful statistic Student *t*-tests of hypotheses $(H_0 | H_A)$ for

Design-based tests, properly utilises survey features

rage

Simple Random Sample (iid) Data

means, proportions, single model parameters; for example, $Y = Y_0$; $\beta_i = 0$ Student t-tests of simple hypotheses concerning differences of linear combinations of means; for example, $\left(\overline{Y}_1 - \overline{Y}_2\right) = 0; \sum_j a_j P_j = 0$

X² test of independence (association) in bivariate and multiway tables: Pearson X², Likelihood Ratio G²

Full and partial *F*-tests for hypotheses for linear regression model goodness of fit and full versus reduced model, for example, $H_0: \beta = \{\beta_1, \beta_2, \dots, \beta_v\} = 0;$ $H_0: \beta_{(a)} = \{\beta_{p-a}, \dots, \beta_p\} = 0.$

F-tests based on expected mean squares for ANOVA-type linear models

Likelihood Ratio X² ests for maximum likelihood estimates of parameters in generalized linear models, for example, $H_{0,MLE}: \beta = \{\beta_1, \beta_2, \dots, \beta_v\} = 0;$ $H_{0,MLE}: \beta_{(q)} = \{\beta_{p-q}, \dots, \beta_p\} = 0.$

Complex Sample Survey Data

Design-adjusted Student t-test

- Correct standard error in denominator
- · Design-adjusted degrees of freedom

Design-adjusted Student t-test

- Correct standard error in denominator reflecting separate estimates of variance and covariance of component estimates
- Design-adjusted degrees of freedom

Design-adjusted X² and F-tests

Rao-Scott first- and second-order corrections adjust for design effects in $\Sigma(p)$

• X² transformed to F-test statistic

Design-adjusted Wald X² or F-test

- Correct $\hat{\Sigma}(\beta)$ under complex design
- Adjusted degrees of freedom

Linear regression parameterization of the ANOVA model. Design-adjusted Wald X² or *F*-tests as in linear regression above

Design-adjusted Wald X² or F-test

• Correct $\hat{\Sigma}(\beta)$ under complex design

· Adjusted degrees of freedom Design-adjusted likelihood ratio test (Lumley and Scott, 2014)

Other useful statistic

• Rao-Scott Chi-Square Test: a design-adjusted version of the Pearson chi-square test. Page 166

2 versions are available (F and chi-square)

- Pseudo-R2: Nagelkerke and Cox-Snell pseudo-R2 statistics for logistic regression: survey featured statistics are available. Page 243
- Archer-Lemeshow goodness of fit test for survey data is the counterpart of Hosmer-Lemeshow goodness of fit test. Page 244

Generalizability

- An extreme example
- H0 concludes differently

Page 50

Regression Models of Log-Transformed Household Income for the 2006 HRS Black Subpopulation (n = 2,465)

Independent	Regression Parameter Estimate (Standard Error , <i>p</i> -value)						
Variable	Unweighted	Weighted (Design-Based SE					
Age (Continuous)	$0.0026 \ (0.0058, p = 0.66)$	$0.0056 \ (0.0093, p = 0.54)$					
Gender							
Female	-0.4629 (0.1246, p < 0.001)	-0.3034 (0.2199, $p = 0.17$)					
Male	Reference category	Reference category					
Education							
Grade 0–11	-1.5585 (0.1991, p < 0.0001)	-1.9016 (0.2610, p < 0.0001)					
Grade 12	-1.0304 (0.2011, $p < 0.0001$)	-1.5177 (0.2871, p < 0.0001)					
Grade 13–15	-0.5145 (0.2152, p < 0.0001)	-0.7114 (0.1330, $p < 0.0001$)					
Grade 16+	Reference category	Reference category					
Region							
Northeast	$0.0804 \ (0.2743, p = 0.77)$	$0.1462 \ (0.1680, p = 0.38)$					
Midwest	-0.3331 (0.2635, $p = 0.21$)	-0.2423 (0.2614, $p = 0.36$)					
South	-0.2525 (0.2476, p = 0.31)	-0.3519 (0.2405, p = 0.15)					
West	Reference category	Reference category					
Urbanicity							
Urban	-0.0697 (0.1690, p = 0.68)	-0.0553 (0.3751, $p = 0.88$)					
Suburban	$0.05878 \ (0.1965, p = 0.76)$	-0.0262 (0.4764, p = 0.58)					
Rural	Reference category	Reference category					

Software
availability

Analytic Technique Stata SAS SUDAAN SPSS IVEware WesVar Mplus R Descriptive Means Yes Yes Yes Yes Yes Yes NA^a Yes NA^a Yes Totals Yes Yes Yes Yes Yes Yes Ratios Yes Yes Yes Yes Yes Yes NA^a Yes Percentiles NA^a No Yes Yes No No Yes Yes NA^a Contingency tables Yes Yes Yes Yes Yes Yes Yes Regression Linear Yes Yes Yes Yes Yes Yes Yes Yes Yes **Binary** logistic Yes Yes Yes Yes Yes Yes Yes Ordinal logistic Yes Yes^b No Yes Yes Yes Yes Yes Multinomial logistic Yes Yes Yes Yes Yes Yes Yes No Poisson regression Yes No Yes No Yes No Yes Yes Probit Yes Yes No Yes Yesb No Yes Yes Yes^b No No Cloglog Yes Yes No Yes Yes Survival Analysis Yes Yes Yes Yes No Yes Yes Cox proportional Yes hazards model Kaplan-Meier No No Yes Yes No No Yes Yes estimation Missing Data Multiple imputation Yes Yes Yes Yesc Yes Yesd Yes Yes of missing data Analysis of multiply Yes Yes Yes Yesc Yes Yesd Yes Yes imputed data sets

Available Analytic Techniques in the Software Packages

Page 404

How to make inference about target population?

- Interview weight should be used
 - to make statistical inference at the population level.
- PSU/cluster + strata information need to be used
 - to get correct SE.
 - Otherwise variance is incorrectly calculated under SRS

assumption.

	🔿 🕤 🍸 Filter					Q				
	arthritis.type	heart.attack	interview.weight	PSU [‡]	strata 🍦	bmi 🍦	diabetes 🍦	smoke 🌐	age 🌣	race $^{\circ}$
2	Non-arthritis	No	8727.798	1	70	(25,80]	No	No	(50,70]	Other
3	Non-arthritis	No	24342.505	2	<mark>6</mark> 8	(0,25]	No	No	(0,50]	Black
4	Non-arthritis	No	9811.075	2	65	(25,80]	No	Yes	(50,70]	Other
5	Rheumatoid arthritis	No	8058.685	2	66	(25,80]	Yes	No	(50,70]	Black
6	Non-arthritis	No	19055.790	2	71	(25,80]	No	No	(0,50]	Other
7	Non-arthritis	No	89655.454	1	<mark>59</mark>	(0,25]	No	No	(0,50]	Other
8	Non-arthritis	No	25274.173	1	66	(25,80]	No	No	(0,50]	Other
9	Non-arthritis	No	7782.354	1	62	(25,80]	No	No	70+	White
11	Non-arthritis	No	14685.353	1	67	(25.801	No	Yes	(0.501	Other

Estimating treatment effect in analytic sample

- Interview weight should NOT be used to make inference about the study sample.
- PSU/cluster + strata information need to be used to get correct SE. Otherwise variance is incorrectly calculated under SRS assumption (i.e., sample dependency ignored).

Generalizability of regression estimates

- OR = <u>1.66 (95% CI 0.71, 3.89</u>) applies to <u>US population</u>.
 - used weights and cluster+strata option
- OR = <u>1.54</u> (95% CI 0.82, 2.89) applies to <u>survey sample</u>.
 used cluster+strata option, no weights
- OR = <u>1.54</u> (95% CI 0.95, 2.51) has a misleading/somewhat smaller CI / SE estimate.
 - no survey features used; assuming SRS

Inappropriate survey data analysis KNHANES is a

- complex,
- stratified,
- multistage,
- probability-cluster survey

of a representative sample of the non-institutionalized civilian population in Korea.

Inappropriate survey data analysis

A study

Table 1. Number (%) of research articles published in peerreviewed journals cited in PubMed using Korean National Health and Nutrition Examination Survey data during 2007 to 2012¹

		Dublished	No. of research articles (%				
		year	Ordinary statis- tical analysis	Design-based analysis	Total		
	Journal of Preventive Medicine & Public Health	2007	12 (92.3)	1 (7.7)	13		
		2008	15 (88.2)	2 (11.8)	17		
ph.2013.46.2.96		2009	24 (88.8)	3 (11.2)	27		
	ic of the Kereen	2010	40 (87.0)	6 (13.0)	46		
n Analysis of the Korean		2011	58 (76.3)	18 (23.7)	76		
	······	2012 ¹	57 (73.1)	21 (26.9)	78		
Lee ⁴	with of Ulean College of Medicine, Ulean	Total	206 (80.2)	51 (19.8)	257		

¹Until the end of June.

Original Article

J Prev Med Public Health 2013;46:96-104 · http://dx.doi.org/10.3961/jpmp pISSN 1975-8375 eISSN 2233-4521

Inappropriate Survey Desig National Health and Nutritic **Produce Biased Results**

Yangho Kim¹, Sunmin Park², Nam-Soo Kim³, Byung-Kook

¹Department of Occupational and Environmental Medicine, Ulsan University Hospital, University ²Department of Food and Nutrition, Hoseo University, Asan; ³Institue of Environmental & Occupational Medicine, Soonchunhyang University, Asan; ⁴Korea Industrial Health Association, Seoul, Korea

Survey weights are

useless at all times

useful and irreplaceable

often problematic and should be handled with care

useful only if we are interested in population

Word of caution about "weights"!

- Most people agree that <u>weights</u> should be used to get population based <u>descriptive estimates</u> (e.g., prevalence, means).
- Not everybody agrees that 'weights' should be used <u>beyond descriptive</u> <u>statistics</u> (e.g., in regressions). Some arguments
 - **Reduced precision** / Inflated SE / loss of efficiency.
 - Weights can't be handled in many software packages.

Correct specification of model may still produce valid results

- Why not check results from both approaches and investigate?
- Popular survey data analysis textbooks seem to use weights.

Word of caution about "stata/cluster"! 👁

- Consequences of omitting survey features (weights, cluster, strata)
 - Biased estimates
 - Underestimated SE
 - Smaller Cl
 - Overstated significance levels
- There may be some arguments for omitting weights, but none for cluster/strata
- Unfortunately, in CCHS public access data cluster/strata info are not provided (only weights provided)
 - Can estimate OR (for sample or population), but CIs are wrong for both.

Word of caution about "Subpopulation analysis" 🔊

- Analysis with subpopulation (data restricted to only male group) will lead to bias, if you simply delete part of the population (the female population)
 - Point estimates will be fine
 - It is the SE estimation that will not be able to take proper consideration of
 - # of strata
 - # of cluster
 - complete info about these are essential for SE calculations

• Solution?

- Prepare the design object first (based on all data, strata, cluster, weight)
- Subset within the design (not just the data) for the subpopulation (e.g., male only)

Additional Textbook List

- Heeringa, S. G., West, B. T., & Berglund, P. A. (2017). <u>Applied survey data analysis</u>. Chapman and Hall/CRC.
- Kim, Y., Park, S., Kim, N. S., & Lee, B. K. (2013). <u>Inappropriate survey design analysis of the Korean National Health and Nutrition Examination Survey may produce biased results</u>. Journal of preventive medicine and public health, 46(2), 96.
- Lewis, T. H. (2016). Complex survey data analysis with SAS. Chapman and Hall/CRC.
- Lumley, T. (2011). <u>Complex surveys: a guide to analysis using R</u> (Vol. 565). John Wiley & Sons.
- Lumley T. (2016). <u>Survey: Analysis of Complex Survey Samples</u>. R package version 3.31. <u>https://cran.r-project.org/web/packages/survey/index.html</u>.

www.ehsankarim.com