

ehsan.karim@ubc.ca Nov 5, 2020 SPPH 504/007

Reference

 Stefany Coxe, Stephen G. West & Leona S. Aiken (2009) The Analysis of Count Data: A Gentle Introduction to Poisson Regression and Its Alternatives, Journal of Personality Assessment, 91:2, 121-136, DOI: 10.1080/00223890802634175

Drinks Data

- Outcome = y = count variable
- A count variable is a variable that takes on discrete values
 - **0**,
 - 1,
 - o 2,
 - ο ...
- A count variable can only take on positive integer values or zero because an event cannot occur a negative number of times.

ile <u>E</u> di	t <u>V</u> iew <u>D</u> ata <u>T</u> rai	nsform <u>A</u> nalyze <u>(</u>	<u>Graphs</u> <u>C</u> ustom	<u>U</u> tilities Add- <u>o</u> ns
2 H	🖨 🛄 🗠 /	⊴ 🖺 🛓 🗐	IP A 🏝	🛛 🔤 🐴 🖻
	case	sensation	gender	у
1	1	6.0558422062	1	4
2	2	5.3051880684	1	4
3	3	3.9388114893	1	•
4	4	4.2985436925	1	6
5	5	5.5827881731	1	(
6	6	4.8942631705	1	5
7	7	4.5075339143	C) 6
8	8	6.1575326536	C)
9	9	4.1852066372	1	
10	10	5.6361043334	1	6
11	11	5.5583253923	1	
12	12	5.4596035984	C) (
13	13	5.8752298549	C) 4
14	14	5.0164490054	C)
15	15	5.6140844176	C)
16	16	5.8780683996	1	11
17	17	4.7063989661	C) 1
40		F 7000004044		

Why not use Multiple Linear Regression?

• MLR Assumption:

O Residuals need to be normally distributed.

• Homoscedasticity is required.

• Residuals need to be independent.

• Count outcome variables can <u>violate the first two</u> <u>assumptions</u> of MLR in several ways.

Generalized Linear Model

- GLM generalizes MLR for use with many different types of error structures and dependent variables.
- The GLM family of analyses can provide accurate results for data sets having
 - o binary,
 - ordered categorical,
 - count, and
 - time to failure (or success) dependent variables.
- Poisson regression is a member of GLM family.

GLM

The GLM introduces two major modifications to the MLR framework.

(1) It allows transformations of the predicted outcome, which can linearize a potentially nonlinear relationship between the Y and X.

In GLM, there is a special transformation function called the <u>link function</u>.

• In Poisson regression, the link function is the **natural log** (i.e., log e or ln).

GLM

The GLM introduces two major modifications to the MLR framework.

(2) GLM is flexible in error structure: MLR assumes a normal error structure, whereas GLM allows for a variety of other error structures.

• Poisson regression:

distribution of the errors ~ Poisson distribution

		common distributions with ty	pical use	s and canonical link fund	,0013
Distribution	Support of distribution	Typical uses	Link name	Link function	Mean function
Normal	real: $(-\infty,+\infty)$	Linear-response data	Identity	$\mathbf{X}\boldsymbol{\beta} = \mu$	$\mu = \mathbf{X}\boldsymbol{\beta}$
Exponential	real: $(0,+\infty)$	Exponential-response data,	Inverse	$\mathbf{X}oldsymbol{eta} = -\mu^{-1}$	$\mu = -(\mathbf{X}\boldsymbol{\beta})^{-1}$
Gamma Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}\boldsymbol{eta} = -\mu^{-2}$	$\mu = (-\mathbf{X}\boldsymbol{\beta})^{-1/2}$
Poisson	integer: $0, 1, 2, \ldots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}\boldsymbol{eta} = \ln\left(\mu ight)$	$\mu = \exp\left(\mathbf{X}\boldsymbol{\beta}\right)$
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence			
Binomial	integer: $0,1,\ldots,N$	count of # of "yes" occurrences out of N yes/no occurrences	-		
	integer: $[0,K)$		Logit	$\mathbf{X}\boldsymbol{\beta} = \ln\left(\underline{\mu}\right)$	$\mu = \frac{\exp\left(\mathbf{X}\boldsymbol{\beta}\right)}{1} = \frac{1}{1}$
Categorical	K-vector of integer: $[0, 1]$, where exactly one element in the vector has the value 1	outcome of single K-way occurrence	Logit	$(1-\mu)$	$\mu = 1 + \exp(\mathbf{X}\boldsymbol{\beta}) = 1 + \exp(-\mathbf{X}\boldsymbol{\beta})$
Multinomial	K-vector of integer: $[0,N]$	count of occurrences of different types (1 K) out of N total K-way occurrences			

Common distributions with typical uses and canonical link functions

2. GLM error distribution

• The probability density of the normal distribution depends on two parameters, the mean μ and SD σ .

$$f(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(y-\mu)^2/2\sigma^2}.$$

• Poisson distribution is specified by <u>only one</u> <u>parameter</u> μ . The parameter μ defines both the mean and the variance of the distribution.

$$P(Y = y|\mu) = \frac{\mu^y}{y!}e^{-\mu}$$

Poisson Distribution Properties

Poisson distribution is a discrete distribution that takes on a probability value only for nonnegative integers;
 O or greater.

Poisson Distribution Properties

 Poisson distribution with an expected value greater than 10 approaches a <u>normal distribution</u> in shape and symmetry.

Review of Logistic Regression

$$logit(\hat{\pi}) = \ln\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = b_0 + b_1 X_1 + b_2 X_2$$
$$+ \dots + b_p X_p,$$

 Logistic regression equation is also <u>linear</u>; specifically, logistic regression is <u>"linear in the logit"</u>.

Poisson Regression

 $\ln(\hat{\mu}) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$

- μ -hat is the predicted count on the outcome variable given the specific values on the predictors $X_1, X_2, ..., X_p$.
- linear relationship between each predictor and the predicted score just as in MLR.
- "linear in the logarithm."
- The **residuals** of a Poisson regression model are assumed to be Poisson distributed.

Poisson Regression Interpretation

 Interpretation: For a 1-unit increase in X1, the predicted count (µ-hat) is multiplied by exp(b1), holding all other variables constant (multiplicative).

- Here, the unstandardized (raw) regression coefficient b1 is exponentiated.
- effect of a <u>1-unit change in X1 on the outcome</u>

$$e^{b_1(X_1+1)} = e^{b_1X_1+b_1} = e^{b_1X_1}e^{b_1}.$$

Drinks Data

- Outcome = y = the <u>number of alcoholic</u> <u>drinks that an individual consumes</u> on one particular Saturday night during the study
- X1 = sensation = an eight-item subscale of sensation seeking (<u>excitement seeking</u>), potentially ranging from 1 (low) to 7 (high).
- X2 = Gender:
 - \circ 0 = female and
 - \circ 1 = male

	case	sensation	gender	У
1	1	6.0558422062	1	
2	2	5.3051880684	1	
3	3	3.9388114893	1	
4	4	4.2985436925	1	
5	5	5.5827881731	1	
6	6	4.8942631705	1	
7	7	4.5075339143	0	
8	8	6.1575326536	0	
9	9	4.1852066372	1	
10	10	5.6361043334	1	
11	11	5.5583253923	1	
12	12	5.4596035984	0	
13	13	5.8752298549	0	
14	14	5.0164490054	0	
15	15	5.6140844176	0	
16	16	5.8780683996	1	
17	17	4.7063989661	0	

Transform Analyza Cranba Custom Utilities Add an

*drinks.sav [DataSet1] - IBM SPSS Statistics Data Editor

Drinks Data

• Outcome as scale

Continuous Variable Information										
		Ν	Minimum	Maximum	М	ean	Std. Deviation			
Dependent Variable	у	400	0	17		2.93	2.972			
Covariate	sensation	400	3.194107179	6.487512912	5.183	779405	.7682502918			

- Mean of y not close to 3. Variance is close to 10.
- Mean and the variance (not SD) are not similar.

• Linear regression fit

<u>Heterogeneity</u> of variance indicating that MLR is not appropriate for these data.

- Poisson regression fit
- Equation for predicted number of alcoholic drinks consumed: µ-hat = exp(-0.140) × exp(0.231) sensation.
- Intercept: exp(0.140) = 0.87 is the predicted number of alcoholic drinks consumed by a person who has <u>a score of zero on the sensation-seeking</u>

<u>measure;</u>	(+ve	value	as	opposed	to	-ve	value	from	MLR).
			Para	ameter Estimates					

			95% Wald Confi	dence Interval	Hypothesis Test		
Parameter	В	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.
(Intercept)	140	.2128	557	.277	.435	1	.510
sensation (Scale)	.231 1 ^a	.0397	.154	.309	34.065	1	.000

Dependent Variable: y

Model: (Intercept), sensation

a. Fixed at the displayed value.

- Poisson regression fit
- Equation for predicted number of alcoholic drinks consumed: µ-hat = exp(-0.140) × exp(0.231) sensation.
- Slope: The exponentiation of the regression coefficient for sensation seeking, exp(0.231) = 1.26, is the predicted multiplicative effect of a <u>1-unit</u> change in sensation seeking on number of alcoholic drinks consumed.

Parameter B		8	95% Wald Confid	dence Interval	Hypothesis Test			
	в	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.	
(Intercept)	140	.2128	557	.277	.435	1	.510	
sensation	.231	.0397	.154	.309	34.065	1	.000	
(Scale)	1 ^a							

Parameter Estimates

Model: (Intercept), sensation

a. Fixed at the displayed value.

• Poisson regression fit $R_{deviance}^2 = 1 - \frac{deviance(fitted_model)}{deviance(intercept_only)}$.

Deviance is a <u>measure of lack of fit</u>; this **measure is** <u>reduced by adding predictors</u> to the intercept-only model if the predictors have some accuracy in accounting for the outcome.

 Poisson regression (like logistic) has <u>no direct analogue</u> <u>to R-square</u>. Deviance value for the model can be used to assess fit of the model. For comparison, we need **nested** model.

- Poisson regression fit
 - ✓ Poisson distribution has one parameter µ, which characterizes both the mean and the variance of the distribution.
 - The Poisson model assumes that the conditional mean and variance are equal, a condition known as equidispersion.
 - ✓ The situation in which the variance is larger than the mean is known as overdispersion.

• Overdistersed Poisson regression fit (Alternative 1)

- The simplest adjustment for overdispersion that can be made to the Poisson regression model is the **overdispersed Poisson model**.
- This model includes a **second parameter** that is used in the estimation of the conditional variance known as the *overdispersion scaling parameter*, φ.
- The model estimated with this correction now essentially assumes an error distribution that is Poisson with mean μ and variance $\varphi\mu$.
 - The scaling parameter φ will be greater than 1 if <u>overdispersion</u> is present in the data;
 - φ will be equal to 1 if there is <u>equidispersion</u>, and the resulting model is equivalent to the standard Poisson regression model.
 - φ will be less than 1 if the data are <u>underdispersed</u>.

Negative binomial regression fit (Alternative 2)

- The negative binomial model also accounts for overdispersion.
 - An *α* parameter (dispersion parameter; but different than scale parameter in poisson) greater than 0 indicates that overdispersion is present;
 - Larger values indicate more overdispersion.
- Interpretation of regression coefficients for the negative binomial model is identical to that for the standard Poisson model.
- A pseudo-R-square (such as was calculated for Poisson regression) cannot be calculated for negative binomial models when dispersion parameter is introduced (will not be nested).

- (Overdispersed) Negative binomial regression fit
- The exponentiation of the regression coefficient for sensation seeking, exp(0.220) = 1.25, is the multiplicative effect of a 1-unit change in sensation seeking on number of alcoholic drinks consumed, allowing for heterogeneity between individuals.

			95% Wald Confi	dence Interval	Hypoth	nesis Test	
Parameter	в	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.
(Intercept)	078	.3350	735	.578	.054	1	.816
sensation	.220	0635	.095	.344	11.969	1	.001
(Scale)	.722 ^a						
(Negative binomial)	1 ⁰						

ntercept), sensatior

a. Computed based on the Pearson chi-square.

b. Fixed at the displayed value.

- (Overdispersed) Negative binomial regression fit
 - The estimate of α for this model is 0.722, which is greater than 0, indicating that there is overdispersion in the data.

2			95% Wald Confi	dence Interval	Hypoth	nesis Test	
Parameter	в	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.
(Intercept)	078	.3350	735	.578	.054	1	.816
sensation	.220	0635	.095	.344	11.969	1	.00
(Scale)	.722 ^a						
(Negative binomial)	1 ⁰						

Model: (Intercept), sensation

a. Computed based on the Pearson chi-square.

b. Fixed at the displayed value.

Drinks Data Analyses

	MLR	Poisson	Overdispersed Poisson	(Overdispersed) Negative Binomial
Sensation	.652	.231	.231	.220
SE	.191	.0397	.0669	.0635
P-value	.001	<.0001	.001	0.001
Scale		1	2.847	1
Alpha (scale)		0	0	.722

Summary

- Poisson regression is often used for modeling count data. It has a number of extensions useful for count models.
- Negative binomial regression can be used for over-dispersed count data, that is when the conditional variance exceeds the conditional mean. It can be considered as a generalization of Poisson regression.

Thanks!

ehsan.karim@ubc.ca