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e Outcome =y = count variable

case sensation ‘ ender ‘

1 | 1H 6.0558;22062“ - 1H . 4“

e A count variable is a variable that : s sssssiriss j :

takes on discrete values . i St 1 e

0O O 6 6 4.8942631705 1 8

’ 7/ 7 4.5075339143 0 6

O 1 8 8 6.1575326536 0 1

! 9 9 4.1852066372 1 74

O 2 , 10 10 5.6361043334 1 8

1 11  5.5583253923 9 3

O 12 12 5.4596035984 0 3

13 13 5.8752298549 0 4

I 14 ! 14 5.0164490054 0 1

e A count variable can only take on i fo s ranessee | :

Eosmve integer values or zero T fLE ; !
ecause an event cannot occur a Data View Varidle View

negative number of times.



Why not use Multile Linear Regression”

® MLR Assumption:
O Residuals need to be normally distributed.

O Homoscedasticity is required.

O Residuals need to be independent.

® Count outcome variables can violate the first two
assumptions of MLR in several ways.




aenevdized Linear Mode!

e GLM generalizes MLR for use with many different
types of error structures and dependent variables.

e The GLM family of analyses can provide accurate
results for data sets having

o binary,

o ordered categorical,

o count, and

o time to failure (or success) dependent variables.

e Poisson regression is a member of GLM family.



aLM

The GLM introduces two major modifications to the MLR
framework.

(1) It allows transformations of the predicted outcome,
which can linearize a potentially nonlinear relationship
between the Y and X.

In GLM, there is a special transformation function called
the link function.

o In Poisson regression, the link function is the natural log (i.e.,
log e or In).




aM

The GLM introduces two major modifications to the MLR
framework.

(2) GLM is flexible in error structure: MLR assumes a
normal error structure, whereas GLM allows for a variety
of other error structures.

o Poisson regression:

distribution of the errors ~ Poisson distribution



. GLM link

Common distributions with typical uses and canonical link functions

Link
Distribution Support of distribution Typical uses name Link function Mean function
Normal real: (—oo, +oo) Linear-response data Identity Xﬂ =pu n= X‘B
Exponential Exponential-response data, 1 -1
real: Inverse = -y = -
Gamma (0’ -I—OO) scale parameters X'B K (Xﬂ)
Inverse Inverse ) -1/2
real: () = = (-
Gaussian ( ! +OO) squared Xp K K ( X‘B)
count of occurrences in fixe:
Poisson integer: 0. 7 T Lo — =
3 1,2 amount of time/space 4 Xﬂ In (“) A s (X‘B)
outcome of single yes/no
Bernoulli integer: {0. 1} gey
occurrence
count of # of "yes"
Binomial integer: 0,1, ... N occurrences out of N yes/no
occurrences
integer: [O, K) Lot XB=I ( 1% _ exp (X3) . 1
Categorical K-vector of integer: [O‘ ]_], outcome of single K-way ) [ 0 j exp (Xﬁ) 1+ exp (_Xﬂ)
where exactly one elementin | occurrence
the vector has the value 1
count of occurrences of
Multinomial | K-vector of integer: [0, )\r] different types (1 .. K) out of

N total K-way occurrences




2. GLM evvor dishribution

e The probability density of the normal
distribution depends on two parameters, the
mean and SD o.

g
fOlu,o?) = o—O—1? /207
V2o

e Poisson distribution is specified by only one
parameter 4. The parameter y defines both the
mean and the variance of the distribution.

‘Y

=
P(Y =ylu) = Tk :



Poisson Distribution Properties

e Poisson distribution is a
discrete distribution
that takes on a
probability value only for
honnegative integers;

O O or greater.

@ Poisson probability density 7]
1 Histogram of data
—— Poisson fit of histogram |




Poisson Distribution Properties

* Poisson distribution with an expected value greater
than 10 approaches a normal distribution in shape and
symmetry.
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Review of Logistic Regression

logit(7) = In (

= A) =by+ b X, +b2X>
1 -7

+ - 4+ b,X,,

® |ogistic regressiomequation is also linear; specifically,
logistic regression is " linear in the logit”.
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Poisson chrcseion

In(2) = by + b1 X, +b2X2+"'+prp

f~hat is the pradicted count on the outcome vaNgable given the
specific values oh\the predictors Xi, Xz,..., Xp.

linear relationship between each predictor and the predicted
score just as in MLR.

“linear in the logarithm."

The residuals of a Poisson regression model are assumed to be
Poisson distributed.
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Poisson Regressin Inferpretation

* Interpretation: For a 1-unit increase in X1, the
predicted count (~hat ) is multiplied by exp(bl)

holding all other variables constant (multiplicative).

* Here, the unstandardized (raw) regression
coefficient bl is exponentiated.

® cffect of a 1l-unit change in X1 on the outcome

DXt — b Xitb _ biX b
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Drinks Data

hﬁ: *drinks.sav [DataSet1] - IBM SPSS Statistics Data Editor

. OL!TCOme = y = .The. Mmber‘ Of alCOhOIiC File Edit View Data Transform Analyze Graphs Custom Utilities Add-ons W
drinks that an individual consumes on SHOM e~ Bl h B8 Bad
one particular Saturday night during | |

case sensation ender ‘

The STUdy 1 | 1H 6.0558;22062H - 1” . 4‘L

2 2 5.3051880684 1 4

3 3 3.9388114893 1 1

e X1 = sensation = an eigh‘r—ijrem - e : .
subs;ale of sensation seekmg_ : | v ] g
(excitement seeking), potentially : 8 6157532653 0 1

9 9 4.1852066372 1 74

ranging from 1 (low) to 7 (high). i L 1 8

1 11 5.5583253923 1 3

12 12 5.4596035984 0 3

o XZ = Gender': 13 13 5.87522908549 0 4
14 14 5.0164490054 0 1

@) O ) fema'e Clnd 15 15 5.6140844176 0 1

16 16 5.8780683996 1 11

o 1= m0|e 17 17 47063989661 0 1

an an - P

(W

IData View Variable View
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Drinks Data

® QOutcome as scale

Continuous Variable Information

N Minimum Maximum Mean Std. Deviation
DependentVariable vy 400 0 17 2.93 2.972
Covariate sensation 400 3.194107179 6.487512912 5183779405 7682502918

® Mean of y not close to 3. Variance is close to 10.

® Mean and the variance (not SD) are not similar.



Drinks Data Mahsis ()

® Linear regression fit

Heterogeneity of variance
indicating that MLR is not

appropriate for these data.

sion Standardized Residual

Regres

Scatterplot

Dependent Variable: y

Regression Standardized Predicted Value
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e Equation for predicted number of alcoholic drinks

Drinks Data hahsis (2)

e Poisson regression fit

exp(-0.140) x exp(0.231) sensation.

consumed: t~hat =

® TIntercept: exp(0.140) = 0.87 is the predicted number of alcoholic drinks
consumed by a person who has a score of zero on the sensation-seeking

measure; (+ve value as opposed to -ve value from MLR).

Parameter Estimates

95% Wald Confidence Interval

Hypothesis Test

Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) -.140 .2128 -.557 277 435 1 510
sensation 23 .0397 154 .309 34.065 1 .000
(Scale) i®

Dependent Variahle: y
Model: (Intercept), sensation

a. Fixed atthe displayed value.
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Drinks Data hahsis (2)

e Poisson regression fit

e Equation for predicted number of alcoholic drinks consumed: ~hat =
exp(-0.140) x exp(0.231) sensation.

e Slope: The exponentiation of the regression coefficient for sensation
seeking, exp(0.231) = 1.26, is the predicted multiplicative effect of a 1l-unit
change in sensation seeking on number of alcoholic drinks consumed.

Parameter Estimates
95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) -.140 .2128 -.557 277 435 1 510
sensation 231 .0397 154 .309 34.065 1 .000
(Scale) i

Dependent Variahle: y
Model: (Intercept), sensation

a. Fixed atthe displayed value.
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Drinks Data hahsis (2)

deviance(fitted_model)
deviance(intercept_only)

® Poisson regression fit R —1-

Deviance is a measure of lack of fit; this measure is
reduced by adding predictors to the intercept-only
model if the predictors have some accuracy in
accounting for the outcome.

* Poisson regression (like logistic) has no direct analogue

to R-square. Deviance value for the model can be used
to assess fit of the model. For comparison, we need

nested model.
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Drinks Data Aahsis (2)

® Poisson regression fit

v/ Poisson distribution has one parameter x, which
characterizes both the mean and the variance of
the distribution.

v The Poisson model assumes that the conditional
mean and variance are equal, a condition known as
equidispersion.

v The situation in which the variance is larger than
the mean is known as overdispersion.
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Drinks Data hahsis ()

Overdistersed Poisson regression fit (Alternative 1)

The simplest adjustment for overdispersion that can be made to the
Poisson regression model is the overdispersed Poisson model.
This model includes a second parameter that is used in the estimation of
the conditional variance known as the overdispersion scaling parameter, .
The model estimated with this correction now essentially assumes an error
distribution that is Poisson with mean  and variance @y.
« The scaling parameter ¢ will be greater than 1 if overdispersion is
present in the data;
« @ will be equal to 1 if there is equidispersion, and the resulting model
is equivalent to the standard Poisson regression model.
* @ will be less than 1 if the data are underdispersed.
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Drinks Data Mnasis (4)

(Alternative 2)

The negative binomial model also accounts for overdispersion.
An a parameter (dispersion parameter; but different than scale
parameter in poisson) greater than O indicates that overdispersion
IS present;
Larger values indicate more overdispersion.

Interpretation of regression coefficients for the negative binomial
model is identical to that for the standard Poisson model.

A pseudo-R-square (such as was calculated for Poisson regression)
cannot be calculated for negative binomial models when dispersion

parameter is introduced (will not be nested).
23



Drinks Data Aahsis (4)

® (Overdispersed) Negative binomial regression fit

 The exponentiation of the regression coefficient for
sensation seeking, exp(0.220) = 1.25, is the multiplicative
effect of a 1-unit change in sensation seeking on number
of alcoholic drinks consumed, allowing for heterogeneity
between individuals.

Parameter Estimates
959% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parame ter B Std. Error Lower Upper Square df Sig.
(Intercept) -.078 3350 -.735 578 .054 1 816

SSSSS tion 220 0635 .095 344 11.969 1 .001
(Scale) :722*
(Negative hinomial) 1

Dependent Variahle: y
Model: (Intercept), sensation

a. Computed based on the Pearson chi-square. 24

b. Fixed atthe displayed value.



Drinks Data Aahsis (4)

® (Overdispersed) Negative binomial regression fit
- The estimate of a for this model is 0.722,

which is greater than O, indicating that there is
overdispersion in the data.

Parameter Estimates

959% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parame ter B Std. Error Lower Upper Square df Sig.
(Intercept) -.078 3350 -.735 578 .054 1 816

SSSSS tion 220 0635 .095 344 11.969 1 .001
(Scale) :722*
1

(Negative hinomial)

Dependent Variahle: y
Model: (Intercept), sensation

a. Computed based on the Pearson chi-square. 25
b. Fixed atthe displayed value.



MLR Overdispersed (Overdispersed)
Poisson Negative Binomial

.0397 .0669 .0635

Scale 2.847
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éummw\,

® Poisson regression is offen used for modeling count

data. It has a number of extensions useful for count
models.

® Negative binomial regression can be used for

over-dispersed count data, that is when the
conditional variance exceeds the conditional mean. It
can be considered as a generalization of Poisson
regression.
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