Causal Assumptions

ehsan.karim@ubc.ca
$\Leftrightarrow \quad \begin{gathered}\text { Oct 10, } 2021 \\ \text { SPPH 504/007 }\end{gathered}$

Reference

- Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman \& Hall/CRC (link)

Notations

Outcome
Treatment
Confounder
Risk factors
Effect
Noise

RCT

- Treatments are randomized.
- Objective is to estimate treatment effect.
- If enough sample size
- Confounding should not be an issue
- Observed
- unobserved

How to estimate unbiased treatment effect from an RCT? Y

= outcome, $\mathrm{A}=$ treatment, $\mathrm{C}=$ confounder, $\mathrm{R}=$ Pure risk factors for outcome, $\mathrm{V}=$ Determinants of treatment
assignment
$\mathrm{Y} \sim$ Indicator for the groups determined by randomization

$$
\begin{array}{r}
Y \sim A \\
Y \sim A+C \\
Y \sim A+C+R \\
Y \sim A+C+R+V \\
Y \sim A+R \\
Y \sim A+V
\end{array}
$$

What changes when randomization is not there?

- Need to think why RCT was working
- If we can meet the same conditions, observational data analysis may have some merit
- What is RCT achieving?

Table 1.-Characteristics of 5735 Critically III Patients*
RHC

	Varlable	No RHC (n=3551)
Age range, $y \dagger$ <50	$884(25)$	RHC (n=2184)
50 to <60	$546(16)$	$540(25)$
60 to <70	$812(23)$	$371(17)$
70 to <80	$809(23)$	$577(26)$
>80	$500(14)$	$529(24)$
Sex \dagger	$1914(54)$	$167(8)$
Male	$1637(46)$	$1218(59)$
Female	$2753(78)$	$906(41)$
Race	$585(17)$	$1707(78)$
White	$213(5)$	$335(15)$
Black		$142(7)$
Other		

Notations under RCT

What changes when randomization is not there?

- Need additional considerations
- Identifiability conditions
- $P(A \mid L)$ depends on measured L
- No unmeasured confounding, exchangeability
- $Y(a)$ independent of $A \mid L$
- A well-defined?
- Causal consistency
- $P(A \mid L)>0$
- Positivity

Exchangeability

- John takes rosuvastatin $(A=1)$ and his cholesterol level $=200$
- Jim do not take rosuvastatin ($A=0$) and his cholesterol level = 250
- If Jim took rosuvastatin ($A=1$), and if his cholesterol level was same as John (200), then we say that Jim and John are exchangeable.

Conditional Exchangeability

Exchangeable within same sex: $y(a)$ independent of $A \mid$ Sex

Name	$\mathrm{Y}(1):$ outcome when takes $\dagger x$	$y(0):$ outcome when does not take tx	Sex
John	200	250	Male
Jim	200	250	Male
Kate	150	200	Female
Hilda	150	200	Female

Exchangeable within same sex and age

Name	$\mathrm{Y}(1):$ outcome when takes $t x$	$\mathrm{y}(0)$: outcome when does not take $t x$	Sex	Age
John	200	250	Male	20
Jim	200	250	Male	20
Kate	150	200	Female	20
Hilda	150	200	Female	20
Joseph	400	500	Male	90
Jack	400	500	Male	90
Anna	300	400	Female	90
Melissa	300	400	90	

Exchangeable within same sex and age

observed data

 group: $Y(a)$ independent of $A \mid(s e x, a g e)$ Y~ A + sex + age| Name | $\mathrm{Y}(1):$
 outcome when
 takes $t x$ | $\mathrm{y}(0)$:
 outcome when
 does not take $t x$ | Sex | Age |
| :--- | :--- | :--- | :--- | :--- |
| John | 200 | 250 | Male | 20 |
| Jim | 150 | Male | 20 | |
| Kate | 400 | 200 | Female | 20 |
| Hilda | 500 | Female | 20 | |
| Joseph | 300 | | Male | 90 |
| Jack | | 400 | Male | 90 |
| Anna | | | Female | 90 |
| Melissa | | | | 90 |

observed data

Given some data, how are you analyzing the data? Assuming conditional exchangeability: we analyze $y \sim A+s e x+a g e$

Name	$\mathrm{y}(1):$ outcome when takes $t x$	$\mathrm{y}(0):$ outcome when does not take tx	Sex	Age	U
Subject 1		251	Male	20	$?$
Subject 2	199	Male	20	$?$	
Subject 3	151	Female	20	$?$	
Subject 4		Female	20	$?$	
Subject 5	390	480	Male	90	$?$
Subject 6			Male	90	$?$
Subject 7	303	401	Female	90	$?$
Subject 8				90	$?$

How to select covariates to meet conditional exchangeability?

Checking balance stratifying by exposure
Empirical selection (Stepwise regression) with A being outcome
Empirical selection (Stepwise regression) with Y being outcome
Subject area knowledge

Big data analytics | Modified disjunctive cause criterion |
| ---: |
| Automatic High-Dimensional "Proxy" Adjustment |
| Machine learning variable importance |
| Combining propensity score with empirical selection |
| Change-in-estimate |

Positivity

$$
\operatorname{Pr}(A=a \mid L=I)>0
$$

$$
\operatorname{Pr}(A=1 \mid \text { se } x=\text { male })>0
$$

$$
\operatorname{Pr}(A=1 \mid \text { se } x=\text { female })>0
$$

$$
\operatorname{Pr}(A=0 \mid \text { se } x=\text { male })>0
$$

$$
\operatorname{Pr}(A=0 \mid \text { sex }=\text { female })>0
$$

Can Positivity assumption be empirically verified from the

 data?

Positivity

$\operatorname{Pr}(A=a \mid L=I)>0$
$\operatorname{Pr}(A=1 \mid$ eye color $=$ black $)>0$
$\operatorname{Pr}(A=1 \mid$ eye color $=$ brown $)>0$
$\operatorname{Pr}(A=1 \mid$ eye color $=$ blue $)=0$

- Structural
- Male pregnancy
- Random
- Not really 0, but it can happen due to small sample size
- Zero-cell correction?

Eye color has anything to do with Y and A ?
Positivity only required for L's that are relevant for conditional exchangeability.

https://ehsanx.shinyapps.io/project0/

observed data

Name	$Y(1):$ outcome when takes $t x$	$Y(0):$ outcome when does not take $+x$	Sex	Age
John	200	250	Male	20
Jim	150		Male	20
Kate		200	Female	20
Hilda	500	Male	90	
Joseph			Male	90
Jack		400	Female	90
Anna			20	
Melissa				90

Causal Consistency

$Y(a)=Y$ for everyone receiving $A=a$

$$
\text { (} A=1==\text { rosuvastatin } 5 \mathrm{mg} \text { vs. } A=0==\text { no treatment) }
$$

- John's cholesterol level $=200$ if he takes rosuvastatin $5 \mathrm{mg}(A=1)$
- John's cholesterol level $=250$ if he does not take rosuvastatin $(A=0)$

John's $Y(A=1)=200$
John's $Y(A=0)=250$
Need to specify version: $A=$ rosuvastatin 5 mg

Causal Consistency

Need to specify version: $A=$ rosuvastatin 5 mg
We know often John breaks a 10 mg and takes one-half on 2 separate occasions. Often while breaking the tablet, the split is not exactly 5 mg . Could be 4.5 or 5.5 mg . Is that sufficiently well-defined? Is that meaningfully different? Realistic?

Treatment-variation irrelevance can be an approximation: two IFNbeta-1a products (Rebif and Avonex) and one IFNbeta-1b product (Betaferon)

We want to find out causal effect of overweight (A: BMI is

 25.0 to <30) at age 50 on the risk of mortality (Y) by age 55 in British Columbia. Is A sufficiently well-defined?No, A being BMI = 25.7 would be better defined.

I think so. It is practical.

No. This is ill-defined.

Assumptions related to Mediation Analysis

- General assumptions (mediator acts as an added exposure)
- Conditional exchangeability
- Positivity
- Causal consistency
- Additional
- Model specification (not specific to mediation; applies to total effect models as well)
- No interaction between exposure and mediator

Assumption - 1

- L is sufficient to address confounding. No uncontrolled confounding in:
- exposure-outcome associations
- $\quad Y(A=a, M(a))$ independent of A assignments given L
- exposure-mediator associations
- $\quad M(a)$ independent of A assignments given L
- mediator-outcome associations
- $\quad Y(A=a, M(a))$ independent of M assignments given L
- One related idea is model-misspecification
- Generally good to consider realistic/plausible interactions between
- Exposure * covariate; or Mediator * covariate; or covariate * covariate

Assumptions $-2,3 \& 4$

- Positivity
- All exposure values have non-zero probability for any values of L
- $P(A=a \mid L=I)>0$ for all a and I
- All mediator values have non-zero probability for any values of A \& L
- $P(M=m \mid A=a, L=I)>0$ for all m, a and I
- Causal Consistency
- Observed values are realistic
- No multiple version of A or M
- No exposure-mediator interactions

Thanks!

今 ehsan.karim@ubc.ca
(35) www.ehsankarim.com

